ISO TC 184/SC4/ WG12 N 540 Date:

Supersedes ISO TC 184/SC4/ WG12 N 536

ISO 10303-42

2000-05-05

Product data representation and exchange: Integrated generic resource: Geometric and topological

representation

COPYRIGHT NOTICE: This document is an International Standard and is copyright-protectg
ISO. Except as permitted under the applicable laws of the user’s country, neither this ISO docun
any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or
means, electronic, photocopying, recording, or otherwise, without prior written permission being s§
Requests for permission to reproduce should be addressed to ISO at the address below or ISO’Y
body in the country of the requester:
Copyright Manager
ISO Central Secretariat
1 rue de Varembe
1211 Geneva 20 Switzerland
telephone: +41 22 749 0111
telefacsimile: +41 22 734 0179
Internet:central@isocs.iso.ch
X.400: c=ch; a=400net; p=iso; o=isocs; s=central
Reproduction for sales purposes for any of the above-mentioned documents may be subject tg
payments or a licensing agreement.
Violators may be prosecuted.

bd by

ent nor
by any
pcured.
member

royalty

ABSTRACT:
This part of ISO 10303 specifies the generic resources for shape representation. It contains g
topology and geometric model schemas. It is the second edition of ISO 10303-42.

KEYWORDS: Geometry, topology, solid model, shape representation, geometric models.

pometry,

COMMENTS TO READER:

This document has been reviewed using the project leader review checklist (see WG12 N541),
vener approval checklist (see WG12 N542), and has been determined to be ready for public
contains revisions to take account of all DIS ballot issues and EXPRESS changes introduced
TC2 and TC3 documents.

he con-
tion. It
n TC1,

Project Leader: Ray Goult Project Editor: Ray Goult
Address: 33 Filgrave, Address: 33 Filgrave,

Newport Pagnell, Newport Pagnell,

Bucks. Bucks.

MK16 9ET MK16 9ET

England England
Telephone: 441234 711653 Telephone: +44 1234 711653
Telefacsimile: +44 1234 711653 Telefacsimile: 444 1234 711653
Email: r.goult@clara.net Email: r.goult@clara.net

revision 6, 9/97 (PRW)

ISO 10303-42:2000(E)

(© 1S0O 2000 — Allrights reserved 2000
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in

writing from the publisher.

International Organization for Standardization
Case Postale 56CH-2111 Genéve 20 Switzerland

ISO 10303-42:2000(E)

Contents Page
1 SCOPE . . o 1
1.1 Geometry 1
1.2 Topology 2
1.3 Geometric Shape Models 2
2 Normativereferences e 3
3 Terms, definitions, symbols and abbreviations 3
3.1 Terms defined in ISO 10303-1... i 3
3.2 Otherterms and definitions 4
3.3 Symbols 9
34 Abbreviations 10
4 GEOMELIY e e 13
4.1 Introduction. L e 14
4.2 Fundamental concepts and assumptions. 14
421 Space dimensionality 14
422 Geometricrelationships 15
4.2.3 Parametrisation of analytic curves and surfaces. 15
424 CUIVES . . . e 15
4.2.5 Surfaces. 15
4.2.6 Preferredform 16
4.3 Geometry constant and type definitions Lo 16
43.1 dummy_gri.o 16
4.3.2 dimension_count. 17
4.3.3 b_spline_curve form. 17
434 b_spline_surface form o 18
435 extent_enumeration e 19
4.3.6 Knot_type e 19
4.3.7 preferred_surface curve representation 20
4.3.8 transition_code e e 21
4.3.9 trimming_preference e 21
4.3.10 axis2_placement. e e 22
4.3.11 curve_on_surface. e e 22
4,312 pcurve or_surface e 23
4.3.13 surface _boundary. 23
4.3.14 trimming_select. e 23
4.3.15 vector_or_direction. e 24
4.4 Geometry entity definitions L L L 24
44.1 geometric_representation_context. L., 24
4.4.2 geometric_representation_item 000 25
4.4.3 POINt e e e e e 27
4.4.4 cartesian_point L e e e 27

ISO 10303-42:2000(E)

445

4.4.6

447

4.4.8

449

4.4.10
44.11
4412
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17
4.4.18
4.4.19
4.4.20
4.4.21
4.4.22
4.4.23
4.4.24
4.4.25
4.4.26
4.4.27
4.4.28
4.4.29
4.4.30
4.4.31
4.4.32
4.4.33
4.4.34
4.4.35
4.4.36
4.4.37
4.4.38
4.4.39
4.4.40
4441
4.4.42
4.4.43
4.4.44
4.4.45
4.4.46
4.4.47
4.4.48
4.4.49
4.4.50

cylindrical_point. 28
spherical_point 29
polar_point. 30
POINE_ON_CUIVE o e e e e e e 31
point_on_surface. 32
point_in_volume 32
point_replica 33
degenerate_pCurve 34
evaluated_degenerate_pcurve e 35
direction e 35
VECION o e e 36
placement. 37
axisl_placement 37
axis2_placement_2d 38
axis2_placement_3d 39
cartesian_transformation_operator. 41
cartesian_transformation_operator. 3d. 43
cartesian_transformation_operator.2d. 45
CUIVE . . . o o e e e e e e e e e e e e 47
liNe . . . e 47
CONIC o o e e e e 48
circle e 49
ellipse e 50
hyperbola e 52
parabola 53
clothoid e 55
bounded curve. 56
polyline e 57
b spline_curve 58
b_spline_curve with_ knots, 61
uniform_curve e 63
guasi_uniform_curve e e 63
bezier curve 64
rational_b _spline curve... 65
trimmed_curve e 67
COMPOSITE _CUIVE o o e s e e e e e e e e e e e e 69
composite_curve_segment e 71
reparametrised_composite_curve_segment 72
PCUIVE . . . o e e e e e e e e e 73
bounded pcurve 74
surface_Curve. e e e e 75
intersection_curve e 77
SEAM _CUIVE o e e e e e e e e e e e e e e e e e 77
bounded_surface curve. L e 78
composite_curve_on_surface. Lo 78
offset_ curve 2d 80

©ISO 2000 — All rights reserved

4451
4.4.52
4.4.53
4.4.54
4.4.55
4.4.56
4.4.57
4.4.58
4.4.59
4.4.60
4.4.61
4.4.62
4.4.63
4.4.64
4.4.65
4.4.66
4.4.67
4.4.68
4.4.69
4.4.70
4471
44,72
4.4.73
4.4.74
4.4.75
4.4.76
4.4.77
4.4.78
4.4.79
4.4.80
4481
4.4.82
4.4.83
4.4.84
4.4.85
4.4.86
4.4.87
4.4.88
4.4.89
4.4.90
4491
4.4.92
4.4.93
4.4.94
4.4.95
4.4.96

ISO 10303-42:2000(E)

offset_ curve _3d 81
curve_replica 82
surface e 83
elementary_surface 84
plane 84
cylindrical_surface 85
conical_surface 86
spherical_surface 88
toroidal_surface 89
degenerate_toroidal_surface L L. 91
dupin_cyclide_surface 93
swept_surface 97
surface_of linear_extrusion e 98
surface_of revolution 98
surface_curve_swept_surface Lo 99
fixed_reference_swept_surface 101
bounded_surface. 103
b_spline_surface 103
b_spline_surface_with_knots. 106
uniform_surface e 108
quasi_uniform_surface e 109
bezier surface 110
rational_b _spline surface. 110
rectangular_trimmed _surface. L 0oL 111
curve_bounded surface. L L 113
boundary curve. 115
outer_boundary Curve e 115
rectangular_composite_surface. 116
surface_patch e 118
offset surface. e 119
oriented_surface e 120
surface replica. e 121
volume L 121
block volume 122
wedge volume e 123
pyramid_volume 125
tetrahedron_volume 126
hexahedron_volume 127
spherical_volume. 129
cylindrical_ volume e 130
eccentric_conical_volume. e 131
toroidal_volume 132
ellipsoid_volume 133

b _spline volume 134
b _spline_volume with knots. 136
bezier volume e 138

(©ISO 2000 — All rights reserved v

ISO 10303-42:2000(E)

5

Vi

4497 uniform_volume e 139
4498 quasi_uniform_volume.... 140
4499 rational_b_spline_volume. 141
4.5 Geometry schema rule definition: compatible_dimension 142
4.6 Geometry function definitions L 143
46.1 dimension_of e 143
4.6.2 acyclic_curve_replica 145
4.6.3 acyclic_point_replica. 145
4.6.4 acyclic_surface_replica 146
4.6.5 associated_surface e e 147
4.6.6 base axis 147
4.6.7 build 2axes 149
4.6.8 build_axes 150
4.6.9 orthogonal_complement... 150
4.6.10 firSt_proj_axiS e 151
4.6.11 second_proj_axiS. e 152
4.6.12 cross_produCt. 153
46.13 dot_product. 154
46.14 normalise e 156
4.6.15 scalar_times_vector 157
4.6.16 VECIOr _SUM e e e e e e e 158
4.6.17 vector_difference e 160
4.6.18 default b _spline_ knot mult. 161
4.6.19 default b _spline knots.... 162
4.6.20 default b _spline_curve weights 163
4.6.21 default b _spline surface weights. 163
4.6.22 constraints_param b spline o oL 164
4.6.23 curve_weights_positive e 166
4.6.24 constraints_composite_curve on_surface L oL, 166
4.6.25 get basis surface. e 167
4.6.26 surface weights positive.. L L 168
4.6.27 volume_weights_positive e 169
4.6.28 constraints_rectangular_composite surface 170
4.6.29 list to array e e e e e 171
4.6.30 make array of array. 172
4.6.31 make array of array of array., 173
4.6.32 above plane e 174
4.6.33 same_Side e e 175
Topology 177
5.1 Introduction. 177
5.2 Fundamental concepts and assumptions. 177
5.2.1 Geometricassociations 178
5.2.2 Associations with parameter space geometry 179
5.2.3 Graphs, cycles,andtraversals, 181
5.3 Topology constant and type definitions 182

©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

5.3.1 dummy_tri 182
5.3.2 shell e 182
5.3.3 reversible_topology item 183
534 list_of_reversible_topology item 183
535 set_of reversible_topology_item 184
5.3.6 reversible_topology 184
5.4 Topology entity definitions 184
541 topological_representation_item L. 184
5.4.2 VEIMTEX . . . o o o e e e 185
543 Vertex_point. 186
544 edge 186
545 edge_CUIVE 188
5.4.6 oriented_edge 189
54.7 seam_edge 190
54.8 subedge 191
549 path 191
5410 oriented_path. 192
5411 open_path. L 193
5412 100p o e 194
5413 verteX loop e e e 195
5414 edge loop e 196
5415 poly loop. e 197
5416 face bound e 198
5.4.17 face outer bound 198
5418 face e 199
5419 face surface. 201
5420 oriented face e 202
5421 subface 203
5.4.22 connected face set 204
5.4.23 wvertex_shell. e 205
5424 wire_shell 205
5425 open_shell 207
5.4.26 oriented_open_shell L L 209
5.4.27 closed_shell 210
5.4.28 oriented closed shell 212
5.4.29 connected face sub set 213
5430 connected edge set e 214
5.5 Topology functiondefinitions 214
55.1 conditional_reverse. e 214
5.5.2 topology reversed e 215
5.5.3 edge reversed e 216
554 path reversed 217
5.5.5 face_bound reversed e 217
5.5.6 face reversed. 218
5.5.7 shell_reversed e 219
5.5.8 closed_shell reversed e 219

(©ISO 2000 — All rights reserved Vi

ISO 10303-42:2000(E)

5.5.9 open_shell_reversed 220
5.5.10 set _of topology reversed. 221
5.5.11 list_of topology reversed 222
55.12 boolean_choose 222
5.5.13 path_head to tail 223
55.14 list face_loops e 224
5515 list_loop_edges. 224
55.16 list_shell_edges. 225
55.17 list_shell faces. 225
55.18 list_shell loops. 226
55.19 mixed_loop_type_set. 227
5520 list.to_set. 228
55.21 edge_Curve_pCUIVES i v ittt e e e e e 228
55.22 vertex_point_pPCUIVES o v i it 230
6 Geometricmodels e 231
6.1 Introduction. L 231
6.2 Fundamental concepts and assumptions. 232
6.3 Geometric model type definitionso 232
6.3.1 boolean_operand. 232
6.3.2 boolean_operator. 233
6.3.3 csg_primitive L. e 233
6.3.4 csg_select. e e 234
6.3.5 geometric_set select e 234
6.3.6 surface_model 235
6.3.7 wireframe_model 235
6.4 Geometric model entity definitions. oo o 0oL 235
6.4.1 solid model e 235
6.4.2 manifold_solid_brep e 236
6.4.3 brep_ with_voids 239
6.4.4 faceted brep. e 239
6.4.5 brep 2d e 240
6.4.6 csg_solid 241
6.4.7 boolean result 242
6.4.8 block 243
6.4.9 right_ angular_ wedge e 244
6.4.10 rectangular_ pyramid 245
6.4.11 faceted primitive 246
6.4.12 tetrahedron 247
6.4.13 convex_hexahedron 248
6.4.14 sphere. e 249
6.4.15 right_circular_cone. e 250
6.4.16 right_circular_cylinder 251
6.4.17 eccentriC_CONE i i i e 252
6.4.18 tOrUS 253
6.4.19 ellipsoid e 254

viii

©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

6.4.20 cyclide_segment_solid 255
6.4.21 half_space_solid 256
6.4.22 boxed_half space 257
6.4.23 box_domain. 258
6.4.24 primitive_2d 259
6.4.25 circular_area 259
6.4.26 elliptic_area. 260
6.4.27 rectangular_area 260
6.4.28 polygonal_area. 261
6.4.29 half_space_2d 261
6.4.30 rectangled_half space 262
6.4.31 rectangle_domain. 263
6.4.32 swept_face solid. 263
6.4.33 extruded_face_solid 264
6.4.34 revolved_face solid 265
6.4.35 surface_curve_swept face solid. 266
6.4.36 swept area_solid 268
6.4.37 extruded area solid e 268
6.4.38 revolved area solid 269
6.4.39 surface curve swept area solid. 270
6.4.40 trimmed_volume e e e 271
6.4.41 solid replica e 273
6.4.42 shell based surface model., 273
6.4.43 face based surface_ model. 274
6.4.44 shell based wireframe _model, 275
6.4.45 edge based wireframe modelo o oL 276
6.4.46 geometric_Set. e e e 277
6.4.47 geometric_curve_Set e e e e e 277
6.4.48 sectioned _spine. e e 278
6.4.49 geometric_set replica e 279
6.5 Geometric model function definitions oL oL 280
6.5.1 acyclic_solid replica. e 280
6.5.2 acyclic_set replica e 281
6.5.3 constraints_geometry_shell based surface model 281
6.5.4 constraints_geometry_shell_based wireframe _model. 282
6.5.5 build_transformed_set 283
6.5.6 msb_shells e 284
Annex A (normative) Shortnamesofentities, 286
Annex B (normative) Information object registration 294
B.1 Documentidentification 294
B.2 Schema identification 294
Annex C (informative) Computer-interpretable listings 295
Annex D (informative) EXPRESS-Gdiagrams 296

(©ISO 2000 — All rights reserved iX

ISO 10303-42:2000(E)

Figures

Figure 1
Figure 2
Figure 3
Figure 3
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure D.1
Figure D.2
Figure D.3
Figure D.4
Figure D.5
Figure D.6
Figure D.7
Figure D.8
Figure D.9
Figure D.10
Figure D.11
Figure D.12
Figure D.13
Figure D.14

... 317
.. 318
Spherical_pointattributes L 30
Axis2_placement_3d 41
(a) Cartesian_transformation_operator.3d. 44
(b) Cartesian_transformation_operator.3d. 45
(c) Cartesian_transformation_operator.3d. 46
Circle e e 50
Ellipse 51
Hyperbola 53
Parabola 54
Clothoidcurve e 57
B-splinecurve 60
Composite_CUIVEe e 71
Conical_surface e 87
Cross section of degenerate_toroidal_surface. 92
Cross-sections of a Dupincyclidew@&h 0 94
ADupinringcyclide 95
ADupinhornedcyclide 95
ADupinspindlecyclide. 96
Fixed_reference_swept_surface 102
Curve boundedsurface 114
Wedge_volume and its attributes L L 124
Edgecurve 187
Right angular wedge and its attributes 244
Convex_hexahedron 250
Cross section of cyclide_segment_solid 256
Revolvedfacesolid 265
Geometry_schema EXPRESS-G diagram1o0f13 297
Geometry_schema EXPRESS-G diagram2o0f13 298
Geometry_schema EXPRESS-G diagram30f13 299
Geometry_schema EXPRESS-G diagram4o0f13 300
Geometry_schema EXPRESS-G diagram50f13 301
Geometry_schema EXPRESS-G diagram6o0of13 302
Geometry_schema EXPRESS-G diagram70f13 303
Geometry_schema EXPRESS-G diagram8o0f13 304
Geometry_schema EXPRESS-G diagram9of13 305
Geometry_schema EXPRESS-G diagram100f13. 306
Geometry_schema EXPRESS-G diagram11of13. 307
Geometry_schema EXPRESS-G diagram12of13. 308
Geometry_schema EXPRESS-G diagram130of13. 309
Topology_schema EXPRESS-G diagraml1of3... 310

©ISO 2000 — All rights reserved

Figure D.15
Figure D.16
Figure D.17
Figure D.18
Figure D.19
Figure D.20

Tables

Table 1
Table 2
Table A.1

ISO 10303-42:2000(E)

Topology_schema EXPRESS-G diagram2of3... 311
Topology_schema EXPRESS-G diagram3of3... 312
Geometric_model_schema EXPRESS-G diagraml1of4. 313
Geometric_model_schema EXPRESS-G diagram2of4. 314
Geometric_model_schema EXPRESS-G diagram3of4. 315
Geometric_model_schema EXPRESS-G diagram4of4. 316
Geometry mathematical symbology 9
Topology symbol definitions, 11
Shortnames ofentities 286

(©ISO 2000 — All rights reserved Xi

ISO 10303-42:2000(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through 1SO technical committees. Each member body interested in a subject for which a technical com-
mittee has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with 1ISO, also take part in the work. 1SO collaborates
closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical stan-
dardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies
for voting. Publication as an International Standard requires approval by at least 75% of the member
bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 10303 may be subject of
patent rights. ISO shall not be held responsible for any or all such patent rights. International Standard
ISO 10303-42 was prepared by Technical Committee ISO/TClt#strial automation systems and
integration,Subcommittee SC4ndustrial data.

This second edition of ISO 10303-42 constitutes a technical revision of the first edition (ISO 10303-
42:1994), which is provisionally retained in order to support the continued use and maintenance of
implementations based of the first edition and to satisfy the normative references of other parts of ISO
10303.

It incorporates the corrections published in ISO 10303-42/Cor.1:1999, 10303-42/Cor.2:1999 and 1SO
10303-42/Cor.3:1)

This International Standard is organised as a series of parts, each published separately. The structure of

this international standard is described in ISO 10303-1. The numbering of the parts of this International
Standard reflects its structure:

— Parts 11 to 14 specify the description methods;

— Parts 21 to 29 specify the implementation methods;

— Parts 31 to 35 specify the conformance testing methodology and framework;
— Parts 41 to 50 specify the integrated generic resources;

— Parts 101 to 107 specify the integrated application resources;

— Parts 201 to 237 specify the application protocols;

DTo be published

Xii (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— Parts 301 to 307 specify the abstract test suites;

— parts 501 to 520 specify the application interpreted constructs.

A complete list of parts of ISO 10303 is available from Internet:
<http://www.nist.gov/sc4/editing/step/titles/>

Should further parts of ISO 10303 be published, they will follow the same numbering pattern.

This part of ISO 10303 is a member of the integrated resources series. The integrated resources specify
a single conceptual product data model.

Annexes A and B form an integral part of this part of ISO 10303. Annexes C and D are for information
only.

(©ISO 2000 — All rights reserved Xiii

ISO 10303-42:2000(E)

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and exchange of
product data. The objective is to provide a neutral mechanism capable of describing product data
throughout the life cycle of a product independent from any particular system. The nature of this de-
scription makes it suitable not only for neutral file exchange, but also as a basis for implementing and
sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The parts of
ISO 10303 fall into one of the following series: description methods, integrated resources, application
interpreted constructs, application protocols, abstract test suites, implementation methods, and confor-
mance testing. The series are described in ISO 10303-1. This part of ISO 10303 is a member of the
integrated generic resource series.

This part of ISO 10303 specifies the integrated resources used for geometric and topological representa-
tion. Their primary application is for explicit representation of the shape or geometric form of a product
model. The shape representation presented here has been designed to facilitate stable and efficient com-
munication when mapped to a physical file.

The geometry in clause 4 is exclusively the geometry of parametric curves and surfaces. It includes
the curve and surface entities and other entities, functions and data ggessary for their definition.

A common scheme has been used for the definition of both two-dimensional and three-dimensional
geometry. All geometry is defined in a coordinate system which is established as part of the context of
the item which it represents. These concepts are fully defined in 1ISO 10303 Part 43.

The topology in clause 5 is concerned with connectivity relationships between objects rather than with
the precise geometric form of objects. This clause contains the basic topological entities and specialised
subtypes of these. In some cases the subtypes have geometric associations. Also included are functions,
particularly constraint functions, and data types necessary for the definitions of the topological entities.

The geometric models in clause 6 provide basic resources for the communication of data describing
the precise size and shape of three-dimensional solid objects. The geometric shape models provide a
complete representation of the shape which in many cases includes both geometric and topological data.
Included here are the two classical types of solid model, constructive solid geometry (CSG) and boundary
representation (B-rep). Other entities, providing a rather less complete description of the geometry of a
product, and with less consistency constraints, are also included.

This edition incorporates modifications that are upwardly compatible with the previous edition. Modifi-
cations to EXPRESS specifications are upwardly compatible if:

— instances encoded according to ISO 10303-21 and that conform to an ISO 10303 application proto-
col based on the previous edition of this part, also conform to a revision of that application protocol
based on this edition;

Xiv ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— interfaces that conform to ISO 10303-22 and to an 1SO 10303 application protocol based on the
previous edition of this part, also conform to a revision of that application protocol based on this
edition;

— the mapping tables of ISO 10303 application protocols based on the previous edition of this part
remain valid in a revision of that application protocol based on this edition.

Technical modifications to ISO 10303-42:1994 are categorised as follows:

— changes to the EXPRESS declarations,

— new EXPRESS declarations.

The following EXPRESS declarations have been modified:
geometry schema:

— axisl_placement

— base_axis

— build_axes

— build_2axes

— cartesian_transformation_operator_3d
— cartesian_transformation_operator_2d
— composite_curve_segment

— constraints_param_b_spline

— cross_product

— curve_bounded_surface

— default_b_spline_curve_weights

— default_b_spline_knot_mult

— default_b_spline_knots

— default_b_spline_surface_weights

— geometric_representation_item

(©ISO 2000 — All rights reserved XV

ISO 10303-42:2000(E)

get_basis_surface
list_to_array;

make_array_of_array;,

orthogonal_complement

point;

rectangular_composite_surfacg

scalar_times_vector
surface_of revolution
surface_patch
swept_surface
trimmed_curve;
vector_sum

vector_difference

topology schema:

edge

edge_reverseq

face bound_reversed
face_reversed
face_surface
mixed_loop_type_set
path_head_to_tail
path_reversed

shell_reversed

geometric model schema:

©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— boolean_operandg

— build_transformed_set

— Csg_primitive;

— c¢sg_solid

— revolved_area_solid

— revolved_face solid

— solid_model

— swept_area_solig

— swept_face_solid

The following EXPRESS declarations have been added:
geometry schema:

— above_plane

— b_spline_volume

— b_spline_volume_with_knots
— bezier_volume

— block_volume

— clothoid;

— cylindrical_point;

— cylindrical_volume;

— dummy_gri;

— dupin_cyclide_surface

— eccentric_conical_volume
— ellipsoid_volume

— oriented_surface

(©ISO 2000 — All rights reserved XVii

ISO 10303-42:2000(E)

— hexahedron_volume

— make_array_of_array_of_array;
— point_in_volume;

— polar_point;

— pyramid_volume;

— quasi_uniform_volume
— rational_b_spline_volume
— same_side

— spherical_point,

— spherical_volume

— surface_boundary,

— surface_curve_swept_surface
— tetrahedron_volume

— toroidal_volume;

— volume;

— wedge_volume

topology schema:

— closed_shell_reversed

— connected_face sub_set
— dummy_tri;

— open_shell_reversed

— seam_edge

— subedge

geometric model schema:

Xviii (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— brep_24d;

— circular_area;

— convex_hexahedron

— cyclide_segment_solid

— eccentric_cone

— ellipsoid;

— elliptic_area;

— faceted_primitive;

— half_space_2d

— polygonal_areg

— primitive_2d;

— rectangular_areg

— rectangular_pyramid;

— sectioned_sping

— surface_curve_swept_area_solid
— surface_curve_swept_face_soljd
— tetrahedron;

— trimmed_volume.

Several components of this part of ISO 10303 are available in electronic form. This access is provided
through the specification of Universal Resource Locators (URL's) that identify the location of these files
on the internet. If there is difficulty in accessing these files, contact the ISO Central Secretariat or the
ISO SC4 Secretariat directly at: sc4@cme.nist.gov.

(©ISO 2000 — All rights reserved XiX

ISO 10303-42:2000(E)

XX

©ISO 2000 — All rights reserved

INTERNATIONAL STANDARD ISO 10303-42:2000(E)

Industrial automation systems and integration —
Product data representation and exchange —
Part 42:

Integrated generic resource:

Geometric and topological representation

1 Scope

This part of ISO 10303 specifies the resource constructs for the explicit geometric and topological
representation of the shape of a product. The scope is determined by the requirements for the explicit
representation of an ideal product model; tolerances and implicit forms of representation in terms of
features are out of scope. The geometry in clause 4 and the topology in clause 5 are available for use
independently and are also extensively used by the various forms of geometric shape model in clause 6.

In addition, this part of ISO 10303 specifies specialisations of the concepts of representation where the
elements of representation are geometric.

1.1 Geometry

The following are within the scope of the geometry schema:

— definition of points, vectors, parametric curves and parametriacesf
— definition of finite volumes with internal parametrisation;

— definition of transformation operators;

— points defined directly by their coordinate values or in terms of the parameters of an existing curve
or surface;

— definition of conic curves and elementary swés;

— definition of curves defined on a parametric sgH;

— definition of general parametric spline curves, aaefs and volumes;
— definition of point, curve and surface replicas;

— definition of offset curves and sades;

— definition of intersection curves.

The following are outside the scope of this part of ISO 10303:

ISO 10303-42:2000(E)

— all other forms of procedurally defined curves and surfaces;
— curves and surfaces which do not have a parametric form of representation;
— any form of explicit representation of a ruled surface.

NOTE - For a ruled surface the geometry is critically dependent upon the parametrisation of the
boundary curves and the method of associating pairs of points on the two curves. A ruled surface
with B-spline boundary curves can however be exactly represented by the B-spline surface entity.

1.2 Topology
The following are within the scope of the topology schema:

— definition of the fundamental topological entities vertex, edge, and,feach with a specialised
subtype to enable it to be associated with the geometry of a point, curve, or surface, respectively;

— collections of the basic entities to form topological structures of path, loop and shell and constraints
to ensure the integrity of these structures;

— orientation of topological entities.

1.3 Geometric Shape Models

The following are within the scope of the geometric model schema:
— data describing the precise geometric form of three-dimensional solid objects;
— constructive solid geometry (CSG) models;

— CSG models in two-dimensional space;

— definition of CSG primitives and half-sges;

— creation of solid models by sweeping operations;

— manifold boundary representation (B-rep) models;

— constraints to ensure the integrity of B-rep models;

— surface models;

— wireframe models;

— geometric sets;

2 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— creation of a replica of a solid model in a new location.
The following are outside the scope of this part of ISO 10303:
— non-manifold boundary representation models;

— spatial occupancy forms of solid models (such as octree models);

— assemblies and mechanisms.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this part of ISO 10303. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this part of ISO 10303
are encouraged to investigate the possibility of applying the neasint edions of the normative docu-

ments indicated below. For undated references, the latest edition of the normative document referred to
applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO/IEC 8824-1:1995|nformation technology — Abstract Syntax Notation One (ASN.1): Specification
of basic notation.

ISO 10303-1:1994|ndustrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles.

ISO 10303-11:1994Industrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: The EXPRESS language reference manual.

ISO 10303-41: 2000|ndustrial automation systems and integration - Product data representation and
exchange - Part 41 : Integrated generic resource: Fundamentals of product description and support.

ISO 10303-43: 2000|ndustrial automation systems and integration - Product data representation and
exchange - Part 43 : Integrated generic resource: Representation structures.

3 Terms, definitions, symbols and abbreviations

3.1 Terms defined in ISO 10303-1
For the purposes of this part of ISO 10303 the following terms defined in ISO 10303-1 apply.

— integrated resource.

(©ISO 2000 — All rights reserved 3

ISO 10303-42:2000(E)

3.2 Other terms and definitions

For the purposes of this part of ISO 10303, the following terms and definitions apply. A number of
informal definitions are also given here which will later be used to describe and constrain the topological
entities. They are not intended to be mathematically rigourous. The definitions are given in alphabetical,
not logical order.

3.2.1

arcwise connected

an entity is arcwise connected if any two arbitrary points in its domain can be connected by a curve that
lies entirely within the domain.

3.2.2

axi-symmetric

an entity is axi-symmetric if it has an axis of symmetry such that the object is invariant under all rotations
about this axis.

3.2.3

bounds

the topological entities of lower dimensionality which mark the limits of a topological entity. The bounds
of a face are loops, and the bounds of an edge are vertices.

3.24

boundary

the set of mathematical poinisin a domainX contained inR™ for which there is an open ball
in R™ containingz such that the intersectidii N X is homeomorphic to an open set in the cloged
-dimensional haIf-spacBi, for somed < m, where the homeomorphism carriesnto the origin in
R,

NOTE 1- RY is defined to be the set of all mathematical pofats ~ z4) in R¢ with 23 > 0.

NOTE 2 - For this purpose, the word “open” has its usual mathematical meaning. It does not relate to
“open surface” as defined elsewhere in this part of I®303.

3.25

boundary representation solid model (B-rep)

a type of geometric model in which the size and shape of the solid is defined in terms of the faces, edges
and vertices which make up its boundary.

3.2.6
closed curve
a curve such that both end points are the same.

3.2.7

closed surface
a connected 2-manifold that divides space into exactly two connected components, one of which is finite.

4 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

3.2.8

completion of a topological entity

a set consisting of the entity in question together with all teef, edges and vertices referenced, directly
or indirectly, in the definition of the bounds of that entity.

3.29
connected
equivalent taarcwise connectedsee 3.2.1).

3.2.10
connected component
a maximal connected subset of a domain.

3.2.11

constructive solid geometry (CSG)

a type of geometric modelling in which a solid is defined as the result of a sequence of regularised
Boolean operations operating on solid models.

3.2.12

coordinate space

a reference system that associates a unique setpaframeters with each point in andimensional
space.

3.2.13

curve

a set of mathematical points which is the image, in two- or three-dimensional space, of a continuous
function defined over a connected subset of the real fitt¢, (and which is not a single point.

3.2.14
cycle
a chain of alternating vertices and edges in a graph such that the first and last vertices are the same.

3.2.15
d-manifold with boundary
a domain which is the union of its-dimensional interior and its boundary.

3.2.16

dimensionality

the number of independent coordinates in the parameter space of a geometric entity. The dimensionality
of topological entities which need not have domains is specified in the entity definitions. The dimension-
ality of a list or set is the maximum of the dimensionalities of the elements of that list or set.

3.2.17

domain
the mathematical point set in model space corresponding to an entity.

(©ISO 2000 — All rights reserved 5

ISO 10303-42:2000(E)

3.2.18

euler equations

equations used to verify the topological consistency of objects. Various equalities relating topological
properties of entities are derived from the invariance of a number known as the Euler characteristic.
Typically, these are used as quick checks on the integrity of the topological structure. A violation of an
Euler condition signals an “impossible” object. Two special cases are important in this document. The
Euler equation for graphs is discussed in 5.2.3. Euler conditions for surfaces are discussed in 5.4.25 and
5.4.27.

3.2.19

extent

the measure of the content of the domain of an entity, measured in units appropriate to the dimensionality
of the entity. Thus, length, area and volume are used for dimensionalities 1, 2, and 3, respectively. Where
necessary, the symb@&lwill be used to denote extent.

3.2.20

finite

an entity is finite (sometimes called bounded) if there is a finite upper bound on the distance between any
two points in its domain.

3.2.21

genus of a graph

the integer-valued invariant defined algorithmically by the graph traversal algorithm described in the note
in5.2.3.

3.2.22

genus of a surface

the number of handles that must be added to a sphere to produce a surface homeomorphic to the surface
in question.

3.2.23

geometrically founded

a property ofgeometric_representation_itens (see 4.4.2) asserting their relationship to a coordinate
space in which the coordinate values of points and directions on which they depend for position and
orientation are measured.

3.2.24

geometrically related

the relationship between twgeometric_representation_iters (see 4.4.2) in the same context by which
the concepts of distance and direction between them are defined.

3.2.25
geometric coordinate system
the underlying global rectangular Cartesian coordinate system to which all geometry refers.

3.2.26

6 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

graph

a set of vertices and edges. The graphs discussed in this document are generally called pseudographs in
the technical literaturedrause they allow self-loops and alsoltimle edges connecting the same two
vertices.

3.2.27

handle

the structure distinguishing a torus from a sphere, which can be viewed as a cylindrical tube connecting
two holes in a surface.

3.2.28

homeomorphic

domainsX andY are homeomorphic if there is a continuous functfoinom X to Y which is a one-to-
one correspondence, so that the inverse fungtionexists, and iff ! is also continuous.

3.2.29

inside

domain X is inside domaint” if both domains are contained in the same Euclidean spéteandY
separate$2”™ into exactly two connected components, one of which is finite,and contained in the
finite component.

3.2.30

interior

the d-dimensional interior of al-dimensional domairX contained inR™ is the set of mathematical
pointsz in X for which there is an open bdll in R™ containingz such that the intersectidn N X is
homeomorphic to an open ball #&’.

3.2.31

list

an ordered homogeneous collection with possibly duplicate members. A listis represented by an enclos-
ing pair of brackets, i.dA].

3.2.32
model space
a space with dimensionality 2 or 3 in which the geometry of a physical object is defined.

3.2.33
open curve
a curve which has two distinct end points.

3.2.34

open surface

a surface which is a manifold with boundary, but is not closed. l.e., either it is not finite, or it does not
divide space into exactly two connected components.

3.2.35

(©ISO 2000 — All rights reserved 7

ISO 10303-42:2000(E)

orientable
a surface is orientable if a consistent, continuously varying choice can be made of the sense of the normal
vectors to the surface.

NOTE - This does notrequire a continuously varying choice of/ieesof the normal vectors; the surface
may have tangent plane discontinuities.

3.2.36
overlap
two entities overlap when they have sheli;ds, edges, or vertices in common.

3.2.37
parameter range
the range of valid parameter values for a curve, surface, or volume.

3.2.38

parameter space

the one-dimensional space associated with a curve via its uniquely defined parametrisation or the two-
dimensional space associated with a surface.

3.2.39

parametric volume

a bounded region of three dimensional model space with an associated parametric coordinate system
such that every interior point is associated with a(listv, w) of parameter values.

3.2.40

placement coordinate system

a rectangular Cartesian coordinate system associated with the placement of a geortitgtiicgace,

used to describe the interpretation of the attributes and to associate a unique parametrisation with curve
and surface entities.

3.2.41

self-intersect

a curve or surface self-intersects if there is a mathematical point in its domain which is the image of at
least two points in the object’'s parameter range, and one of those two points lies in the interior of the
parameter range. A vertex, edge or face self-intersects if its domain does.

NOTE - A curve or surface is not considered to be self-intersecting just because it is closed.

3.2.42
self-loop
an edge that has the same vertex at both ends.

3.2.43

set
an unordered collection in which no two members are equal.

8 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

3.2.44
space dimensionality
the number of parameters required to define the location of a pointin the coordinate space.

3.2.45

surface

a set of mathematical points which is the image of a continuous function defined over a connected subset
of the plane 2%).

3.2.46

topological sense

the sense of a topological entity as derived from the order of its attributes.

EXAMPLE 1 The topological sense of an edge is from the edge start vertex to the edge end vertex.

EXAMPLE 2 The topological sense of a path follows the edges in their listed order.

3.3 Symbols

For the purposes of this part of ISO 10303, the following symbols and definitions apply.

3.3.1 Geometry and mathematical symbology

The mathematical symbol convention used in the geometry schema is given in Table 1.

Table 1 — Geometry mathematical symbology

| Symbol | Symbol \
a | Scalar quantity
A | Vector quantity
() | Vector normalisation
a|Normalised vector (e.ca (A) A/|A])
X | Vector (cross) product
Scalar product
A — B | Aistransformed td@
A(u) | Parametric curve
o (u,v) | Parametric surface
S(z,y, z) | Analytic surface
C, | Partial differential of” with respect ta
o, | Partial derivative ob (u, v) with respect ta:
S, | Partial derivative ofS with respect ta
|| | Absolute value, or magnitude or determinant
R™ | m-dimensional real space

(©ISO 2000 — All rights reserved 9

ISO 10303-42:2000(E)

3.3.2 Topology symbols

An attempt has been made to define precisely the constraints that shall be met by the topological entities.
In many cases these are defined symbolically. This subclause describes the notation used for this purpose.
It should be noted that the definitions given here are independent of EXPRESS definitions and usage.

The topological constructs akertex, edge path, loop, face (andsubfacg andshell. These will be
referred to by the following symbols, F, P, ., I'and.S, respectively.

Some of these entities take particular forms and a superscript is used to distinguish between these forms
if necessary.

EXAMPLE 1 A loop may be avertex_loop anedge_loopor apoly loop. These forms are denoted as
LY Le LP,

Table 2 lists the symbols used in the topology schema.

An undirected edge is an entity of tymelge which is not of the subtyperiented_edge In some
instances of the entity definitions, a topological attribute may take the form of a (topological + logical)
pair, this is generally represented by the oriented subtype. A subscriptis used to distinguish between the
topological and the (topological + logical) pairing. For examfeand £; or S° and.S7.

Several topological entities use an Orientation Flag to indicate whether the direction of a referenced entity
agrees with or is opposed to the direction of the referencing entity. If the Flag is TRUE, the direction
of the referenced entity is correct but if the Flag is FALSE, the direction of the referenced entity should
be (conceptually) reversed. It can happen that there are several Orientation Flags in the chain of entities
from the high-level referencing entity to the low-level referenced entity. The direction of a low-level
entity with respect to a high-level entity is obtained by evaluatingiitteexclusive of®) of the chain

of Orientation Flags. For example, a Face references a Loop + Loopflag, a Loop references an Edge +
Edgeflag and an Edge references a Curve + Curveflag. The Face’s “FaceCurveflag” is given by

FaceCurveflag = Loopflag Edgeflag> Curveflag

wherenot exclusive ofs interpreted as true if the two flags have the same value and is defined by the
truth table:

ToT T
ToF F FoT
FoF T
Thus
FoTeoF T

3.4 Abbreviations

For the purposes of this part of ISO 10303, the following abbreviations apply.

10 (©ISO 2000 — All rights reserved

Table 2 — Topology symbol definitions

| Symbol| Definition \

V Vertex

1% Number of unique vertices

E Undirected edge

& Number of unique undirected edg
FE Oriented edge

& Number of unique oriented edges
G*© Edge genus

P Path

P Number of unique paths

G? | Path genus

L Loop

L Number of unique loops

L; Face bound

L Number of unique face bounds
Le Edge loop

L? | Poly loop

LY | Vertex loop

G' |Loop genus

F Face

F Number of unique faces

H/ | Face genus

S Shell

S Number of unique shells

S¢ Closed shell

Se Open shell

S Vertex shell

S* | Wire shell

H® | Shell genus

= Extent
{A} |Set of entities of typel

[A] | Listof entities of typed

(©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

11

ISO 10303-42:2000(E)

B-rep: boundary representation solid model;

CSG: constructive solid geometry.

12 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4 Geometry

The following EXPRESS declaration begins tleometry_schemand identifies the necessary external
references.

EXPRESS specification

*
)
SCHEMA geometry_schema;
REFERENCE FROM representation_schema
(definitional_representation,
founded_item,
functionally_defined_transformation,
item_in_context,
representation,
representation_item,
representation_context,
using_representations);
REFERENCE FROM measure_schema
(global_unit_assigned_context,
length_measure,
parameter_value,
plane_angle_measure,
plane_angle_unit,
positive_length_measure,
positive_plane_angle_measure);
REFERENCE FROM topology schema
(edge_curve,
face_surface,
poly_loop,
vertex_point);
REFERENCE FROM geometric_model_schema
(block,
boolean_result,
cyclide_segment_solid,
eccentric_cone,
edge_based_wireframe_model,
ellipsoid,
face_based_surface_model,
faceted_primitive,
geometric_set,
half_space_solid,
half_space_2d,
primitive_2d,
rectangular_pyramid,
right_angular_wedge,
right_circular_cone,
right_circular_cylinder,
shell_based_surface_model,
shell_based_wireframe_model,

(©ISO 2000 — All rights reserved 13

ISO 10303-42:2000(E)

solid_model,
sphere,
torus);

(*

NOTE 1- The schemas referenced above can be found in the following parts of ISO 10303:

representation_schema ISO 10303-43
measure_schema ISO 10303-41
topology_schema clause 5 of this part of ISO 10303

geometric_model_schema clause 6 of this part of ISO 10303

NOTE 2 - The references topology_schemand togeometric_model_schemare required only for the
definition of thegeometric_representation_itemsupertype.

NOTE 3- See annex D, Figures D.1to D.13, for a graphical presentation of this schema.

4.1 Introduction

The subject of thggeometry_schemds the geometry of parametric curves and surfaces. répee-
sentation_schemdgsee ISO 10303-43) and tigeometric_representation_contextefined in this Part

of ISO 10303, provide the context in which the geometry is defined.gEbenetric_representation_-

context enables a distinction to be made between those items which are in the same context, and thus
geometrically related, and those existing in independent coordinate spaces. In particulgeaaek
ric_representation_item has ageometric_representation_contextvhich includes as an attribute the
Euclidean dimension of its coordinate space. The coordinate system for this space is referred to as the
geometric coordinate system in this clause. Units associatedemigith_measuras andplane_angle_-
measures are assumed to be assigned globally within this context. A globaleatafatible_dimen-

sion) ensures that ajeometric_representation_iters in the samgeometric_representation_context

have the same space dimensionality. The space dimensiodiatitis a derived attribute of all subtypes

of geometric_representation_item

4.2 Fundamental concepts and assumptions

4.2.1 Space dimensionality

All geometry shall be defined in a right-handed rectangular Cartesian coordinate system with the same
units on each axis. Acommon scheme has been used for thgidafof both two-dimensional and three-
dimensional geometry. Points and directions exist in both a two-dimensional and a three-dimensional
form; these forms are distinguished solely by the presence, or absence, of a third coordinate value. Com-
plex geometric entities are all defined using points and directions from which their space dimensionality
can be deduced.

14 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.2.2 Geometric relationships

All geometric_representation_itens which are included ai$ems in a representation having ageo-
metric_representation_contextare geometrically related. Any sugeometric_representation_item
is said to be geometrically founded in the context of tlegresentation

No geometric relationship, such as distance between points, is assumed to egesirfuetric_repre-
sentation_itens occurring agtemsin differentrepresentatiors.

4.2.3 Parametrisation of analytic curves and surfaces

Each curve or surface specified here has a defined parametrisation. In some instances the definitions are
in parametric terms. In others, the conic curves and elementary surfaces, thtedsfare in geometric
terms.

In this latter case a placement coordinate system is used to define the parametrisation. The geometric
definitions contain some, but not all, of the data required for this. The relevant data to define this place-
ment coordinate system is contained in thés2_placementassociated with the individual curve and
surface entities.

4.2.4 Curves

The curve entities defined in 4.4 include lines, elementary conics, a general parametric polynomi-
nal curve, and some referentially or procedurally defined curves. All the curves have a well defined
parametrisation which makes it possible to trim a curve or identify points on the curve by parameter
value. The geometric direction of a curve is the direction of increasing parameter value. For the conic
curves, a method of representation is used which separates their geometric form from their orientation
and position in spce. In each case, the jiti@n and orientation information is conveyed by axis2_-
placement The general purpose parametric curve is represented iy Hpine_curveentity. This was
selected as the most stable form of representation for the communication of all types of polynomial and
rational parametric curves. With appropriate attribute values and subtypespéine_curveentity is
capable of representing single span or spline curves of explicit polynomial, rational, Bézier or B-spline
type. Acomposite_curveentity, which includes the facility to communicate continuity information at
the curve-to-curve transition points, is provided for the construction of more complex curves.

The offset_curve andurve_on_surfacetypes are curves defined with reference to other geometry. Sep-
arate offset_curve entities exist for 2D and 3D applications. The curve on surface entities include an
intersection_curvewhich represents the intersection of two surfaces. Such a curve may be represented
in 3D space or in the 2D parameter space of either of the surfaces.

4.2.5 Surfaces

The surface entities support the requirements of simple boundary representation (B-rep) solid modelling
system and enable the communication of general polynomial and rational parametric surfaces. The sim-
ple surfaces are the planar, spherical, cylindrical, conical and toroidal surfeste$aee_of revolution

and asurface_of_linear_extrusion As with curves, all surfaces have an associated standard parametri-

(©ISO 2000 — All rights reserved 15

ISO 10303-42:2000(E)

sation. In many cases the surfaces, as defined, are unbounded; it is assumed that they will be bounded
either explicitly or implicitly. Explicit bounding is achieved with thectangular_trimmed_surfaceor
curve_bounded_surfaceentities; implicit bounding requires the association of additional topological
information to define &ace

Theb_spline_surfaceentity and its subtypes provide the most general capability for the communication
of all types of polynomial and rational biparametric surfaces. Thiisyemses control points as the most
stable form of representation for the surface geometry. dffset_surfaceentity is intended for the
communication of a surface obtained as a simple normal offset from a given surfaceci#rmgular_-
composite_surfaceentity provides the basic capability to connect together a rectangular mesh of distinct
surface patches, specifying the degree of continuity from patch to patch.

4.2.6 Preferred form

Some of the geometric entities provide the potential capability of defining an item of geometry in more
than one way. Such multiple representationseem@mmodated by requiring the nomination of a ‘pre-
ferred form’ or ‘master representation’. This is the form which is used to determine the parametrisa-
tion.

NOTE - Themaster_representationattribute acknowledges the impracticality of ensuring that multiple
forms are indeed identical and allows the indication of a preferred form. This would probably be determined
by the creator of the data. All characteristics, such as parametrisation, domain, and results of evaluation, for
an entity having multiple representations, are derived from the master representation. Any use of the other
representations is a compromise for practical considerations.

4.3 Geometry constant and type definitions

4.3.1 dummy_gri

The constantlummy_gri is a partial entity definition to be used when typegebmetric_representa-
tion_item are constructed. It provides the correct supertypes anaddime attribute as an empty string.

EXPRESS specification

*
)
CONSTANT
dummy_gri : geometric_representation_item := representation_item(”)]|
geometric_representation_item();
END_CONSTANT;

(*

16 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.3.2 dimension_count

A dimension_countis a positive integer used to define the coordinate space dimensionalityexf-a
metric_representation_context

EXPRESS specification

*
)
TYPE dimension_count = INTEGER;
WHERE
WR1: SELF > 0;
END_TYPE;

(*

Formal propositions

WR1: A dimension_countshall be positive.

4.3.3 b_spline_curve_form

This type is used to indicate that the B-spline curve represents a part of a curve of some sppecific form.

EXPRESS specification

*
)
TYPE b_spline_curve_form = ENUMERATION OF
(polyline_form,
circular_arc,
elliptic_arc,
parabolic_arc,
hyperbolic_arc,
unspecified);
END_TYPE;
(*

Enumerated item definitions

polyline_form: A connected sequence of line segments represented by degree 1 B-spline basis func-
tions.

circular_arc: An arc of a circle, or a complete circle represented by a B-spline curve.

(©ISO 2000 — All rights reserved 17

ISO 10303-42:2000(E)

elliptic_arc: An arc of an ellipse, or a complete ellipse, represented by a B-spline curve.
parabolic_arc: An arc of finite length of a parabola represented by a B-spline curve.
hyperbolic_arc: An arc of finite length of one branch of a hyperbola represented by a B-spline curve.

unspecified: A B-spline curve for which no particular form is specified.

4.3.4 b_spline_surface_form

This type is used to indicate that the B-spline surface represents a part of a surface of some specific form.

EXPRESS specification

*
)
TYPE b_spline_surface_form = ENUMERATION OF
(plane_surf,
cylindrical_surf,
conical_surf,
spherical_surf,
toroidal_surf,
surf_of_revolution,
ruled_surf,
generalised_cone,
quadric_surf,
surf_of linear_extrusion,
unspecified);
END_TYPE;
(*

Enumerated item definitions

plane_surf: A bounded portion of a plane represented by a B-spline surface of degree 1 in each param-
eter.

cylindrical_surf: A bounded portion of a cylindrical surface.

conical_surf: A bounded portion of the surface of a right circular cone.

spherical_surf: A bounded portion of a sphere, or a complete sphere, represented by a B-spline surface.
toroidal_surf: A torus, or portion of a torus, represented by a B-spline surface.

surf_of_revolution: A bounded portion of a surface of revolution.

ruled_surf: A surface constructed from two parametric curves by joining with straight lines correspond-
ing points with the same parameter value on each of the curves.

18 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

generalised_cone:A special case of a ruled surface in which the second curve degenerates to a single
point; when represented by a B-spline surface all the control points along one edge will be coincident.

quadric_surf: A bounded portion of one of the class of surfaces of degree 2 in the variables x, y and z.

surf_of_linear_extrusion: A bounded portion of a surface of linear extrusion represented by a B-spline
surface of degree 1 in one of the parameters.

unspecified: A surface for which no particular form is specified.

4.3.5 extent_enumeration

This type is used to describe the quantitive extent of an object.

EXPRESS specification

*
)
TYPE extent_enumeration = ENUMERATION OF
(invalid,
zero,
finite_non_zero,
infinite);
END_TYPE;
(*

Enumerated item definitions

invalid: The concept of extent is not valid for the quantity being measured.
zero: The extent is zero.
finite_non_zero: The extentis finite (bounded) but not zero.

infinite: The extent is not finite.

4.3.6 knot_type

This type indicates that the B-spline knots shall have a particularly simple form enabling the knots
themselves to be defaulted.

For details of the interpretation of these types see the B-spline curve entity definition (4.4.34).

EXPRESS specification

)

(©ISO 2000 — All rights reserved 19

ISO 10303-42:2000(E)

TYPE knot_type = ENUMERATION OF
(uniform_knots,
quasi_uniform_knots,
piecewise_bezier_knots,
unspecified);

END_TYPE;
(*

Enumerated item definitions

uniform_knots: The form of knots appropriate for a uniform B-spline curve.
unspecified: The type of knots is not specified. This includes the case of non uniform knots.
quasi_uniform_knots: The form of knots appropriate for a quasi-uniform B-spline curve.

piecewise_bezier_knots:The form of knots appropriate for a piecewise Bézier curve.

4.3.7 preferred_surface curve_representation

This type is used to indicate the preferred form of representation for a surface curve, which is either a
curve in geometric space or in the parametric space of the underlying surfaces.

EXPRESS specification

*

)

TYPE preferred_surface_curve_representation = ENUMERATION OF
(curve_3d,
pcurve_s1,
pcurve_s2);

END_TYPE;

(*

Enumerated item definitions

curve_3d: The curve in three-dimensional space is preferred.
pcurve_s1: The first pcurve is preferred.

pcurve_s2: The second pcurve is preferred.

20 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.3.8 transition_code

This type conveys the continuity properties of a composite curve or surface. The continuity referred to is
geometric, not parametric continuity.

EXPRESS specification

*
)
TYPE transition_code = ENUMERATION OF
(discontinuous,
continuous,
cont_same_gradient,
cont_same_gradient_same_curvature);
END_TYPE;

(*

Enumerated item definitions

discontinuous: The segments, or patches, do not join. This is permitted only at the boundary of the
curve or surface to indicate that it is not closed.

continuous: The segments, or patches, join, but no condition on their tangents is implied.

cont_same_gradient: The segments, or patches, join, and their tangent vectors, or tangent planes, are
parallel and have the same direction at the joint; equality of derivatives is not required.

cont_same_gradient_same_curvatureFor a curve, the segments join, their tangent vectors are par-
allel and in the same direction, and their curvatures are equal at the joint; equality of derivatives is not
required. For a surface this implies that the principal curvatures are the same and that the principal
directions are coincident along the common boundary.

4.3.9 trimming_ preference

This type is used to indicate the preferred way of trimming a parametric curve where the trimming is
multiply defined.

EXPRESS specification

*

)

TYPE trimming_preference = ENUMERATION OF
(cartesian,
parameter,
unspecified);

END_TYPE;

(©ISO 2000 — All rights reserved 21

ISO 10303-42:2000(E)

(*

Enumerated item definitions

cartesian: Trimming by cartesian point is preferred.
parameter: Trimming by parameter value is preferred.

unspecified: No trimming preference is communicated.

4.3.10 axis2_placement

This select type represents the placing of mutually perpendicular axes in two-dimensional or in three-
dimensional Cartesian space.

NOTE - This select type enables entities requiring axé&ement information to reference the axedwiit
specifying the space dimensionality.

EXPRESS specification

*

)

TYPE axis2_placement = SELECT
(axis2_placement_2d,
axis2_placement_3d);

END_TYPE;

(*

4.3.11 curve_on_surface

A curve_on_surfacds a curve on a parametric surface. It may be any of the following

— apcurve or

— asurface_curve including the specialised subtypesiofersection_curveand
seam_curveor

— acomposite_curve_on_surface

Thecurve_on_surfaceselect type collects these curves together for reference purposes.

22 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*

)

TYPE curve_on_surface = SELECT
(pcurve,
surface_curve,
composite_curve_on_surface);

END_TYPE;

(*

4.3.12 pcurve_or_surface

This select type enables a surface curve to identify as an attribute the associated surface or pcurve.

EXPRESS specification

*

)

TYPE pcurve_or_surface = SELECT
(pcurve,
surface);

END_TYPE;

(*

4.3.13 surface_boundary

This type is used to select the type of bounding curve to be used in the definitimunfea bounded_-
surface It provides for the boundary to be eithebaundary_curve or adegenerate_pcurve

EXPRESS specification

*
)
TYPE surface_boundary = SELECT
(boundary_curve,
degenerate_pcurve);
END_TYPE;

(*
4.3.14 trimming_select

This select type identifies the two possible ways of trimming a parametric curve, by a cartesian point on
the curve, or by a REAL number defining a parameter value within the parametric range of the curve.

(©ISO 2000 — All rights reserved 23

ISO 10303-42:2000(E)

EXPRESS specification

*

)

TYPE trimming_select = SELECT
(cartesian_point,
parameter_value);

END_TYPE;

(*

4.3.15 vector_or_direction

This type is used to identify the types of entity which can participate in vector computations.

EXPRESS specification

*

)

TYPE vector_or_direction = SELECT
(vector,
direction);

END_TYPE;

(*

4.4 Geometry entity definitions

This subclause contains all the explicit geometric entities. Except for entities defined in a parameter
space, all geometry is defined in a right-handed Cartesian coordinate system (the geometric coordinate
system). The space dimensionality of this coordinate system is established by the contegeofties-
ric_representation_item(see 4.4.2). The curve and surface definitions are all given essentially in terms

of points andor vectors angor scalar (length) values.

4.4.1 geometric_representation_context

A geometric_representation_contexis a representation_contextin which geometric_representa-
tion_items are geometrically founded.

A geometric_representation_contexis a distinct coordinate space, spatially unrelated to other coordi-

nate spaces except as those coordinate spaces are specifically related by an appropriate transformation.
(See 3.2 for definitions of geometrically founded and coordinate space.)

24 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*

)

ENTITY geometric_representation_context
SUBTYPE OF (representation_context);
coordinate_space_dimension : dimension_count;

END_ENTITY;

(*

Attribute definitions

coordinate_space_dimensionThe number of dimensions of the coordinate space which ig¢oe
metric_representation_context

NOTE - Any constraints on the allowed rangeamordinate_space_dimensiomare outside the scope of
this part of ISO 10303.

4.4.2 geometric_representation_item

A geometric_representation_items arepresentation_itemthat has the additional meaning of having
geometric position or orientation or both. This meaning is present by virtue of:

— being acartesian_pointor adirection;
— referencing directly @artesian_pointor adirection;

— referencing indirectly @artesian_pointor adirection.

NOTE 1- An indirect reference to eartesian_pointor direction means that a givegeometric_repre-
sentation_itemreferences theartesian_pointor direction through one or more intervening attributes. In
many cases this information is given in the form ofeatis2_placement

EXAMPLE 1 Consider a circle. It gains its geometric position and orientation by virtue of a reference to

axis2_placementhat in turn references@artesian_pointand severatiirections.

EXAMPLE 2 A manifold_solid_brepis ageometric_representation_itenthat through several layers of
topological_representation_itens, referencesurves, surfaces andpoints. Through additional intervening
entities curves and swtes referenceartesian_pointanddirection.

NOTE 2- The intervening entities, which are all of tympresentation_item need not be of subtype
geometric_representation_item Consider thamanifold_solid_brep from the above example. One of the
intervening levels ofepresentation_itemis aclosed_shell This is atopological_representation_itermand
does not require geometric_representation_contextn its own right. When used as part of the definition
of a manifold_solid_brep that itself is ageometric_representation_item it is founded in ageometric_-
representation_context

(©ISO 2000 — All rights reserved 25

ISO 10303-42:2000(E)

NOTE 3- Ageometric_representation_iteminherits the need to be related toegpresentation_context
in arepresentation The rulecompatible_dimensionensures that thepresentation_contextis ageomet-
ric_representation_context When in the context of geometry, this relationship causegdioenetric_rep-
resentation_itemto be geometrically founded.

NOTE 4 - As subtypes ofepresentation_itemthere is an implicit and/or relationship betwegeomet-
ric_representation_itemandtopological_representation_item The only complex instances intended to be
created aredge_curve face_surface, andertex_point.

EXPRESS specification

*
)

ENTITY geometric_representation_item

SUPERTYPE OF (ONEOF(point, direction, vector, placement,
cartesian_transformation_operator, curve, surface,
edge_curve, face_surface, poly loop, vertex_ point,
solid_model, boolean_result, sphere, right_circular_cone,
right_circular_cylinder, torus, block, primitive_2d,
right_angular_wedge, ellipsoid, faceted_primitive,
rectangular_pyramid, cyclide_segment_solid, volume,
half_space_solid, half_space_2d,
shell_based_surface_model, face_based_surface_model,
shell_based_wireframe_model, edge based_wireframe_model,
geometric_set))

SUBTYPE OF (representation_item);

DERIVE

dim : dimension_count := dimension_of(SELF);
WHERE
WR1: SIZEOF (QUERY (using rep <* using_representations (SELF) |
NOT (GEOMETRY_SCHEMA.GEOMETRIC_REPRESENTATION_CONTEXT' IN
TYPEOF (using_rep.context_of _items)))) = 0;
END_ENTITY;

(*

Attribute definitions

dim: The coordinatgimension_countof thegeometric_representation_item

Formal propositions

WR1: The context of any representation referencirggametric_representation_itenshall be ageo-
metric_representation_context

NOTE 5- Thedim attribute is derived from theoordinate_space_dimensionf ageometric_represen-
tation_contextin which thegeometric_representation_items geometrically founded.

26 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

NOTE 6 - Ageometric_representation_items geometrically founded in one or mogeometric_repre-
sentation_contexs, all of which have the sanwordinate_space dimensionSee the ruleompatible_di-
mensionin 4.5.

4.4.3 point

A point is a location in some real Cartesian coordinate sg&teform 1,2 or3.

EXPRESS specification

*)
ENTITY point
SUPERTYPE OF (ONEOF(cartesian_point, point_on_curve, point_on_surface,
point_in_volume, point_replica, degenerate_pcurve))
SUBTYPE OF (geometric_representation_item);
END_ENTITY;

(*

4.4.4 cartesian_point

A cartesian_pointis apoint defined by its coordinates in a rectangular Cartesian coordinate system, or
in a parameter space. Thetigyis defined in a one, two or three-dimensional space as determined by the
number of coordinates in the list.

NOTE 1- For the purposes of defining geometry in this part of ISO 10303 only two or three-dimensional
points are used.

NOTE 2 - Depending upon thgeometric_representation_contextn which the point is used the names
of the coordinates may be (x,y,z), or (u,v), or any other chosen values.

EXPRESS specification

%)

ENTITY cartesian_point
SUPERTYPE OF (ONEOF(cylindrical_point, polar_point, spherical_point))
SUBTYPE OF (point);
coordinates : LIST [1:3] OF length_measure;

END_ENTITY;

(*

(©ISO 2000 — All rights reserved 27

ISO 10303-42:2000(E)

Attribute definitions

coordinates[1]: The first coordinate of thpoint location.

coordinates[2]: The second coordinate of thp@int location; this will not exist in the case of a one-
dimensional point.

coordinates[3]: The third coordinate of thpoint location; this will not exist in the case of a one or
two-dimensional point.

SELF\geometric_representation_item.dim: The dimensionality of the space in which tpeint is
defined. This is an inherited derived attribute from the geometric representation item supertype and for a
cartesian point is determined by the number of coordinates in the list.

4.4.5 cylindrical_point

A cylindrical_point is a type ofcartesian_point which uses a cylindrical polar coordinate system,
centred at the origin of the corresponding Cartesian coordinate system, to define its location.

EXPRESS specification

%)
ENTITY cylindrical_point
SUBTYPE OF (cartesian_point);

r . length_measure;

theta : plane_angle_measure;

z . length_measure;
DERIVE

SELF\cartesian_point.coordinates : LIST [1:3] OF length_measure :=
[r*cos(theta), r*sin(theta), z];

WHERE
WR1: r >= 0.0;
END_ENTITY;
(*
Attribute definitions

r: The distance from the point to the z axis.
theta: The angle between the plane containing the point and the z axis and the xz plane.

z: The distance from the xy plane to the point.

Formal propositions

WRZ1: The radius r shall be greater than, or equal to zero.

28 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Informal propositions

IP1: The value otheta shall lie in the rang® < theta < 360 degrees.

4.4.6 spherical_point

A spherical_pointis a type ofcartesian_pointwhich uses a spherical polar coordinate system, centred
at the origin of the corresponding Cartesian coordinate system, to define its location.

EXPRESS specification

)
ENTITY spherical_point
SUBTYPE OF (cartesian_point);

r . length_measure;

theta : plane_angle_measure;

phi : plane_angle_measure;
DERIVE

SELF\cartesian_point.coordinates : LIST [1:3] OF length_measure :=
[r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta)];

WHERE
WR1: r >= 0.0;
END_ENTITY;
(*
Attribute definitions

r: The distance from the point to the origin.
theta: The angle between the z axis and the line joining the origin to the point.

phi: The anglep, measured from the x axis to the projection onto the xy plane of the line from the origin
to the point.

NOTE - See Figure 1 for an illustration of the attributes.

Formal propositions

WRZ1: The radius r shall be greater than, or equal to zero.

Informal propositions

IP1: The value otheta shall lie in the rang® < theta < 180 degrees.

(©ISO 2000 — All rights reserved 29

ISO 10303-42:2000(E)

> s

Figure 1 — Spherical_point attributes

IP2: The value ofphi shall lie in the rang® < phi < 360 degrees.

4.4.7 polar_point

A polar_point is a type ofcartesian_point which uses a two dimensional polar coordinate system,
centred at the origin of the corresponding Cartesian coordinate system, to define its location.

EXPRESS specification

%)
ENTITY polar_point
SUBTYPE OF (cartesian_point);

r . length_measure;
theta : plane_angle_measure;
DERIVE

SELF\cartesian_point.coordinates : LIST [1:3] OF length_measure :=
[r*cos(theta), r*sin(theta)];
WHERE
WR1: r >= 0.0;
END_ENTITY;
(*

30 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

r: The distance from the point to the origin.

theta: The angle between the x axis and the line joining the origin to the point.

Formal propositions

WRZ1: The radius r shall be greater than, or equal to zero.

Informal propositions

IP1: The value otheta shall lie in the rang® < theta < 360 degrees.

4.4.8 point_on_curve

A point_on_curveis apoint which lies on acurve. The point is determined by evaluating thrve at
a specific parameter value. The coordinate space dimensionality of the point is thaba$thecurve

EXPRESS specification

%)
ENTITY point_on_curve
SUBTYPE OF (point);

basis_curve . curve;
point_parameter : parameter_value;
END_ENTITY;
(*
Attribute definitions

basis_curve: Thecurve to whichpoint_parameter relates.
point_parameter: The parameter value of thpmint location.

SELF\geometric_representation_item.dim: The dimensionality of the space in which {h@nt_on_-
curve is defined. This is the same as that of Hasis_curve

Informal propositions

IP1: The value of thgoint_parameter shall not be outside the parametric range ofdhere.

(©ISO 2000 — All rights reserved 31

ISO 10303-42:2000(E)

4.4.9 point_on_surface

A point_on_surfaceis a point which lies on a parametric surface. The point is determined by evaluating
the surface at a particular pair of parameter values.

EXPRESS specification

*
)
ENTITY point_on_surface
SUBTYPE OF (point);
basis_surface . surface;
point_parameter_u : parameter_value;
point_parameter_v : parameter_value;
END_ENTITY;

(*

Attribute definitions

basis_surface: Thesurfaceto which the parameter values relate.
point_parameter_u: The first parameter value of tip®int location.
point_parameter_v: The second parameter value of fhant location.

SELF\geometric_representation_item.dim: The dimensionality of the coordinate space ofgibent_-
on_surface This is the same as that of thasis_surface

Informal propositions

IP1: The parametric values specified for u and v shall not be outside the parametric rangbasithe
surface

4,410 point_in_volume

A point_in_volume is a point which lies inside, or on the the surface ofyvalume. The point is
determined by evaluating thlume at the specified parameter values.

EXPRESS specification

)

ENTITY point_in_volume
SUBTYPE OF (point);
basis_volume . volume;

32 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

point_parameter_u : parameter_value;

point_parameter_v : parameter_value;

point_parameter_w : parameter_value;
END_ENTITY;

(*

Attribute definitions

basis_volume: Thevolumeto which the parameter values relate.
point_parameter_u: The first parameter value of tip®int location.
point_parameter_v: The second parameter value of fhant location.

point_parameter_w: The third parameter value of tipint location.

Informal propositions

IP1: The value of the parameter values specified for u, v and w shall not be outside the parametric range
of thebasis_volume

44.11 point_replica

This defines a replica of an existing point (the parent) in a different location. The replica has the same
coordinate space dimensionality as the parent point.

EXPRESS specification

%)
ENTITY point_replica
SUBTYPE OF (point);

parent_pt . point;
transformation : cartesian_transformation_operator;
WHERE

WR1: transformation.dim = parent_pt.dim;
WR2: acyclic_point_replica (SELF,parent_pt);
END_ENTITY;
(*

Attribute definitions

parent_pt: The pointto be replicated.

(©ISO 2000 — All rights reserved 33

ISO 10303-42:2000(E)

transformation: The Cartesian transformation operator which defines the location of the point replica.

Formal propositions

WR1: The coordinate space dimensionality of the transformation attribute shall be the same as that of
theparent_pt.

WR2: A point_replica shall not participate in its own definition.

4.4.12 degenerate_pcurve

A degenerate_pcurveis defined as a parameter space curve, but in three-dimensional model space it
collapses to a single point. It is thus a subtypeaiint, not ofcurve.

NOTE - For example, the apex of a cone could be representedegenerate_pcurve

EXPRESS specification

*
)
ENTITY degenerate_pcurve
SUBTYPE OF (point);
basis_surface: surface;
reference_to_curve : definitional_representation;
WHERE
WR1: SIZEOF(reference_to_curve\representation.items) = 1;
WR2: 'GEOMETRY_SCHEMA.CURVE' IN TYPEOF
(reference_to_curvelrepresentation.items[1]);
WR3: reference_to_curvelrepresentation.
items[1]\geometric_representation_item.dim =2;
END_ENTITY;
(*

Attribute definitions

basis_surface: The surface on which th#egenerate_pcurvdies.

reference_to_curve: The association of thdegenerate_pcurveand the parameter space curve which
degenerates to the (equivalent) point.

Formal propositions

WR1: The set of items in thdefinitional_representationentity corresponding to theference_to_-
curve shall have exactly one element.

34 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

WR2: The unique item in the set shall bearve.

WR3: The dimensionality of this parameter space curve shall be 2.

Informal propositions

IP1: Regarded as a curve in model space dbgenerate_pcurveshall have zero arc length.

4.4.13 evaluated_degenerate_pcurve

An evaluated_degenerate_pcurvis a type ofdegenerate_pcurvewhich gives the result of evaluating
thepcurve and associates it with the corresponding Cartesian point.

EXPRESS specification

*

)

ENTITY evaluated_degenerate_pcurve
SUBTYPE OF (degenerate_pcurve);
equivalent_point : cartesian_point;

END_ENTITY;

(*

Attribute definitions

equivalent_point: The pointin the geometric coordinate system represented by the degenerate pcurve.

4.4.14 direction

This entity defines a general direction vector in two or three dimensioaaksplhe actual magnitudes
of the components have no effect upon the direction being defined, only the ratios x:y:z or x:y are
significant.

NOTE - The components of this entity are not normalised. If a unit vector is required it should be nor-
malised before use.

EXPRESS specification

*
)
ENTITY direction
SUBTYPE OF (geometric_representation_item);
direction_ratios : LIST [2:3] OF REAL;
WHERE

(©ISO 2000 — All rights reserved 35

ISO 10303-42:2000(E)

WR1: SIZEOF(QUERY(tmp <* direction_ratios | tmp <> 0.0)) > O;
END_ENTITY;

(*

Attribute definitions

NOTE - Thedirection_ratios attribute is a list, the individual elements of this list are defined below.
direction_ratios[1]: The componentin the direction of the X axis.
direction_ratios[2]: The componentin the direction of the Y axis.

direction_ratios[3]: The component in the direction of the Z axis; this will not be present in the case of
a direction in two-dimensional coordinate space.

SELF\geometric_representation_item.dim: The coordinate space dimensionality of the direction. This
is an inherited attribute of thgeometric_representation_itensupertype; for this entity it is determined
by the number ofiirection_ratios in the list.

Formal propositions

WR1: The magnitude of the direction vector shall be greater than zero.

4.4.15 vector

This entity defines a vector in terms of the direction and the magnitude of the vector.

NOTE - The magnitude of the vector must not be calculated from the components of the

orientation attribute. This form of representation was selected to reduce problems with numerical instability.
For example a vector of magnitude 2.0 mm and equally inclined to the coordinate axes could be represented
with orientation attribute of (1.0,1.0,1.0).

EXPRESS specification

)

ENTITY vector
SUBTYPE OF (geometric_representation_item);
orientation : direction;

magnitude . length_measure;
WHERE

WR1 : magnitude >= 0.0;
END_ENTITY;

(*

36 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

orientation: The direction of thevector.

magnitude: The magnitude of theector. All vectors ofmagnitude 0.0 are regarded as equal in value
regardless of therientation attribute.

SELF\geometric_representation_item.dim: The dimensionality of the space in which thector is
defined.

Formal propositions

WR1: The magnitude shall be positive or zero.

4.4.16 placement

A placementlocates a geometric item with respect to the coordinate system of its geometric context. It
locates the item to be defined and, in the case of the axis placement subtypes, gives its orientation.

EXPRESS specification

*

)

ENTITY placement
SUPERTYPE OF (ONEOF(axisl_placement,axis2_placement_2d,axis2_placement_3d))
SUBTYPE OF (geometric_representation_item);
location : cartesian_point;

END_ENTITY;

(*

Attribute definitions

location: The geometric position of a reference point, such as the centre of a circle, of the item to be
located.

4.4.17 axisl placement

The direction and location in three-dimensional space of a single axiexisd_placemenis defined

in terms of a locating point (inherited from the placement supertype) and an axis direction; this is either
the direction ofaxis or defaults to (0.0,0.0,1.0). The actual direction for the axis placement is given by
the derived attribute.

(©ISO 2000 — All rights reserved 37

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY axisl_ placement
SUBTYPE OF (placement);
axis : OPTIONAL direction;
DERIVE
z : direction := NVL(normalise(axis), dummy_gri ||
direction([0.0,0.0,1.0]));
WHERE
WR1: SELF\geometric_representation_item.dim = 3;
END_ENTITY;

(*

Attribute definitions

SELF\placement.location: A reference point on the axis.
axis: The direction of the local Z axis.
z: The normalised direction of the local Z axis.

SELF\geometric_representation_item.dim: The space dimensionality of the
axisl placementwhich is determined from itcation, and is always equal to 3.

Formal propositions

WR1: The coordinate space dimensionality shall be 3.

4.4.18 axis2_placement_2d

The location and orientation in two-dimensional space of two mutually perpendicular axesis®n -
placement_2ds defined in terms of a point, (inherited from the placement supertype), and an axis. It can
be used to locate and orientate an object in two-dimensional space and to define a placement coordinate
system. The entity includes a point which forms the origin of thec@ient coordinate system. A
direction vector is required to complete the definition of thecpinent coordinate system. Tied -

direction defines the placement X axis direction; the placement Y axis direction is derived from this.

EXPRESS specification

*
)
ENTITY axis2_placement_2d
SUBTYPE OF (placement);
ref _direction : OPTIONAL direction;
DERIVE

38 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

p : LIST [2:2] OF direction := build_2axes(ref_direction);
WHERE
WR1: SELF\geometric_representation_item.dim = 2;
END_ENTITY;
(*
Attribute definitions

SELF\placement.location: The spatial position of the reference point which defines the origin of the
associated placement coordinate system.

ref _direction: The direction used to determine the direction of the local X axis. If
ref_direction is omitted, this direction is taken from the geometric coordinate system.

p: The axis set for the placement coordinate system.
p[1]: The normalised direction of the placement X axis. This is (1.0,0.@¥ifdirection is omitted.

p[2]: The normalised direction of the placement Y axis. This is a derived attribute and is orthogonal to
p[1].

Formal propositions

WR1: The space dimensionality of tlais2_placement_2dhall be 2.

4.4.19 axis2_placement_3d

The location and orientation in three-dimensional space of two mutually perpendicular ax@ss2n
placement_3dis defined in terms of a point, (inherited from the placement supertype), and two (ideally
orthogonal) axes. It can be used to locate and orientate a non axi-symmetric object in space and to define
a placement coordinate system. Théitgrincludes a point which forms the origin of thegaement
coordinate system. Two direction vectors are required to complete the definition oater@nt coor-

dinate system. Thaxisis the placement Z axis direction and tleé_direction is an approximation to

the placement X axis direction.

NOTE - Letz be the placement Z axis direction aacdbe the approximate placement X axis direction.
There are two methods, mathematically identical but numerically different, for calculatingaitesmpnt X
and Y axis directions.

a) The vectora is projected onto the plane defined by the origin péirand the vector to give the
placement X axis directionas (a (a =z)z). The placement Y axis direction is then given by

v (z xXx).

b) The placement Y axis direction is calculatedvas (z x a) and then the placement X axis direction is
givenbyx (y x z).

(©ISO 2000 — All rights reserved 39

ISO 10303-42:2000(E)

The first method is likely to be the more numerically stable of the two, and is used here.

A placement coordinate system referenced by the parametric equations is derived feotis2hglace-
ment_3ddata for conic curves and elementary surfaces.

EXPRESS specification

)
ENTITY axis2_placement_3d
SUBTYPE OF (placement);

axis . OPTIONAL direction;

ref _direction : OPTIONAL direction;
DERIVE

p : LIST [3:3] OF direction := build_axes(axis,ref_direction);
WHERE

WR1: SELF\placement.location.dim = 3;
WR2: (NOT (EXISTS (axis))) OR (axis.dim = 3);
WR3: (NOT (EXISTS (ref_direction))) OR (ref_direction.dim = 3);
WR4: (NOT (EXISTS (axis))) OR (NOT (EXISTS (ref _direction))) OR
(cross_product(axis,ref_direction).magnitude > 0.0);
END_ENTITY;

(*

Attribute definitions

SELF\placement.location: The spatial position of the reference point and origin of the associated
placement coordinate system.

axis: The exact direction of the local Z axis.

ref_direction: The direction used to determine the direction of the local X axis. If necessary an adjust-
ment is made to maintain orthogonality to theis direction. If axis and/orref_direction is omitted,
these directions are taken from the geometric coordinate system.

p: The axes for the placement coordinate system. The directions of these axes are derived from the
attributes, with appropriate default values if required.

p[1]: The normalised direction of the local X axis.
p[2]: The normalised direction of the local Y axis

p[3]: The normalised direction of the local Z axis.

NOTE - See Figure 2 for interpretation of attributes.

40 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

03]

location T

ref_direction
p[2]

project J
onto plane
normal to
axis

Figure 2 — Axis2_placement_3d

Formal propositions

WR1: The space dimensionality of tIBELF\placement.locationshall be 3.
WR2: The space dimensionality akis shall be 3.
WR3: The space dimensionality oéf_direction shall be 3.

WRA4: The axis and theref_direction shall not be parallel or anti-parallel. (This is required by the
build_axesfunction.)

4.4.20 cartesian_transformation_operator

A cartesian_transformation_operatordefines a geometric transformation composed of translation, ro-
tation, mirroring and uniform scaling.

The list of normalised vectorg defines the columns of an orthogonal matiix These vectors are
computed, by théase_axidunction, from the direction attributesxisl, axis2and, in
cartesian_transformation_operator_3d axis3 If |T| 1, the transformation includes mirroring.
The local origin pointA, the scale valué and the matrixXT together define a transformation.

The transformation for point with position vectorP is defined by

P—-A+4+STP

(©ISO 2000 — All rights reserved 41

ISO 10303-42:2000(E)

The transformation for direction d is defined by

d —- Td

The transformation for gector with orientation d andmagnitude % is defined by
d - Td

and
k — Sk

For those entities whose attributes includeaais2_placementthe transformation is applied, after the
derivation, to the derived attribut@sdefining the placement coordinalgections. For a transformed
surface the direction of the surface normal at any point is obtained by transforming the normal, at the
corresponding point, to the originsiirface For geometric entities with attributes (such as the radius of

a circle) which have the dimensionality of length, the values will be multiplied by

For curves on surface the curve.reference_to_curvewill be unaffected by any transformation.
Thecartesian_transformation_operatorshall only be applied to geometry defined in a consistent sys-
tem of units with the same units on each axis. With all optional attributégesimthe transformation
defaults to the identity transformation. Thartesian_transformation_operatorshall only be instanti-

ated as one of its subtypes.

NOTE - See Figures 3(a-c) for demonstration of effect of transformation.

EXPRESS specification

*
)
ENTITY cartesian_transformation_operator
SUPERTYPE OF(ONEOF(cartesian_transformation_operator_2d,
cartesian_transformation_operator_3d))
SUBTYPE OF (geometric_representation_item,
functionally_defined_transformation);

axisl . OPTIONAL direction;

axis2 . OPTIONAL direction;

local_origin : cartesian_point;

scale . OPTIONAL REAL;
DERIVE

scl : REAL := NVL(scale, 1.0);
WHERE

WR1: scl > 0.0;
END_ENTITY;

(*

42 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

axisl: The direction used to determingl], the derived X axis direction.
axis2: The direction used to determing2], the derived Y axis direction.

local_origin: The required translation, specified as a cartesian point. The actual translation included in
the transformation is from the geometric origin to the local origin.

scale: The scaling value specified for the transformation.

scl: The derived scal§ of the transformation, equal &ealeif that exists, or 1.0 otherwise.

Formal propositions

WR1: The derived scalingclshall be greater than zero.

4.4.21 cartesian_transformation_operator_3d

A cartesian_transformation_operator_3ddefines a geometric transformation in
three-dimensional space composed of translation, rotation, mirroring and uniform scaling.

The list of normalised vectorg defines the columns of an orthogonal matiix These vectors are

computed from the direction attributegisl, axis2andaxis3by thebase_axidunction. If | T| 1,
the transformation includes mirroring.

EXPRESS specification

*
)
ENTITY cartesian_transformation_operator_3d

SUBTYPE OF (cartesian_transformation_operator);

axis3 : OPTIONAL direction;
DERIVE

u : LIST[3:3] OF direction

:= base_axis(3,SELF\cartesian_transformation_operator.axis1,
SELF\cartesian_transformation_operator.axis2,axis3);

WHERE

WR1: SELF\geometric_representation_item.dim = 3;
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 43

ISO 10303-42:2000(E)

| N

shape after]

transformation
(rotation)

shape before
transformation

Figure 3 — (a) Cartesian_transformation_operator_3d

Attribute definitions

SELF\cartesian_transformation_operator.axisl: The direction used to determing1], the derived
X axis direction. If necessarw[1] is adjusted to make it orthogonal i93].

SELF\cartesian_transformation_operator.axis2: The direction used to determing2], the derived
Y axis direction. If necessary|2] is adjusted to make it orthogonal 1] andu[3].

axis3: The exact direction ofi[3], the derived Z axis direction.

SELF\cartesian_transformation_operator.local_origin: The required translation, specified as a carte-
sian point. The actual translation included in the transformation is from the geometric origin to the local
origin.

SELF\cartesian_transformation_operator.scale: The scaling value specified for the transformation.

SELF\cartesian_transformation_operator.scl: The derived scal® of the transformation,
equal toscaleif that exists, or 1.0 otherwise.

u: The list of mutually orthogonal, normalised vectors defining the transformation matrikhey are
derived from the explicit attributesxis3 axisl, andaxis2in that order.

44 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

N
, N
‘ /}\\\\
‘ | /' \\\
,/ ! (‘\ u[2]
= /7
shape after —— | ,’ ,l J/ /
transformation | ,' VA
tation, scali / /
(rotation, scaling) / ,/ //,// /Shope before
(/ // transformation
v
Ul 3]~ / Y

Figure 3 — (b) Cartesian_transformation_operator_3d

Formal propositions

WRZ1: The coordinate space dimensionality of this entity shall be 3.

4.4.22 cartesian_transformation_operator_2d

A Cartesian_transformation_operator_2ddefines a geometric transformation in
two-dimensional space composed of translation, rotation, mirroring and uniform scaling.

The list of normalised vectorg defines the columns of an orthogonal matiix These vectors are
computed from the direction attributesis1 and axis2 by the base_axisfunction. If | T 1, the

transformation includes mirroring.

EXPRESS specification

)
ENTITY cartesian_transformation_operator_2d
SUBTYPE OF (cartesian_transformation_operator);

DERIVE

(©ISO 2000 — All rights reserved 45

ISO 10303-42:2000(E)

| N

shape before

o ——— transformation
AV U
\\ \
\
\ Y
\

\
shape after "
transformation \
(rotation, scaling,
translation)

Figure 3 — (c) Cartesian_transformation_operator_3d

u : LIST[2:2] OF direction :=
base_axis(2,SELF\cartesian_transformation_operator.axis1,
SELF\cartesian_transformation_operator.axis2,?);
WHERE
WR1: SELF\geometric_representation_item.dim = 2;
END_ENTITY;

(*

Attribute definitions

SELF\cartesian_transformation_operator.axisl: The direction used to determing1], the derived
X axis direction.

SELF\cartesian_transformation_operator.axis2: The direction used to determing2], the derived
Y axis direction.

SELF\cartesian_transformation_operator.local_origin: The required translation, specified as a carte-
sian point. The actual translation included in the transformation is from the geometric origin to the local
origin.

SELF\cartesian_transformation_operator.scale: The scaling value specified for the transformation.

46 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

SELF\cartesian_transformation_operator.scl: The derived scal& of the transformation, equal to
scaleif that exists, or 1.0 otherwise.

u: The list of mutually orthogonal, normalised vectors defining the transformation matrikhey are
derived from the explicit attributesxislandaxis2in that order.

Formal propositions

WR1: The coordinate space dimensionality of this entity shall be 2.

4.4.23 curve

A curve can be envisioned as the path of a point moving in its coordinate space.

EXPRESS specification

)
ENTITY curve
SUPERTYPE OF (ONEOF(line, conic, clothoid, pcurve, surface curve,
offset_curve_2d, offset_curve_3d, curve_replica))
SUBTYPE OF (geometric_representation_item);
END_ENTITY;

(*

Informal propositions

IP1: A curve shall be arcwise connected.

IP2: A curve shall have an arc length greater than zero.

4.4.24 line

Alineis an unbounded curve with constant tangent directiolinéis defined by goint and adirection.
The positive direction of the line is in the direction of ttlie vector.

The curve is parametrised as follows:

P = pnt
VvV = dir
Alu) = P+4+auV

and the parametric range iso < u < oc.

(©ISO 2000 — All rights reserved 47

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY line
SUBTYPE OF (curve);
pnt : cartesian_point;
dir : vector;
WHERE
WR1: dir.dim = pnt.dim;
END_ENTITY;
(*

Attribute definitions

pnt: The location of thdine.
dir: The direction of thdine; the magnitude and units dir affect the parametrisation of the line.

SELF\geometric_representation_item.dim: The dimensionality of the coordinate space for lihe.
This is an inherited attribute from the geometric representation item supertype.

Formal propositions

WR1: pnt anddir shall both be 2D or both be 3D entities.

4.4.25 conic

A conicis a planar curve which could be produced by intersecting a plane with a cone.

A coniccurve is defined in terms of its intrinsic geometric properties rather than being described in terms
of other geometry.

A conic entity always has a ptement coordinate system definedabsys2_placementthe parametric
representation is defined in terms of this placement coordinate system.

EXPRESS specification

)

ENTITY conic
SUPERTYPE OF (ONEOF(circle, ellipse, hyperbola, parabola))
SUBTYPE OF (curve);
position: axis2_placement;

END_ENTITY;

(*

48 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

position: The location and orientation of the conic. Further details of the interpretation of this attribute
are given for the individual subtypes.

4.4.26 circle

A circle is a conic section defined by a radius and the location and orientation of the circle. Interpretation
of the data shall be as follows:

= position.location (centre)
= position.p[1]

= position.p[2]

= position.p[3]

= radius

N x QO
I

and the circle is parametrised as
A(u) C+ R((cosu)x + (sinu)y)
The parametrisation rangelis< « < 360 degrees.
In the placement coordinate system defined above, the circle is the equiatiOnwhere
Clz,y,z) w24y R?
The positive sense of the circle at any point s in the tangent direcTipty, the curve at the point, where

T (Cy.Cy,0)

NOTE - A circular arc is defined by using tigmmed_curve entity in conjunction with theircle entity.

EXPRESS specification

%)
ENTITY circle

SUBTYPE OF (conic);

radius . positive_length_measure;
END_ENTITY;

(*

Attribute definitions

SELF\conic.position.location: This inherited attribute defines the centre of the circle.

(©ISO 2000 — All rights reserved 49

ISO 10303-42:2000(E)

p[2]

ref_direction

|
p[1]

axis

p[3]

Figure 4 — Circle

radius: The radius of the circle, which shall be greater than zero.

NOTE - See Figure 4 for interpretation of attributes.

4.4.27 ellipse

An ellipseis a conic section defined by the lengths of the semi-major and semi-minor diameters and the
position (center or mid point of the line joining the foci) and orientation of the curve.

Interpretation of the data shall be as follows:

C = position.location
x = position.p[1]
y = position.p[2]
7z = position.p[3]
Ry = semi_axis_1
Ry, = semi_axis_2

and the ellipse is parametrised as
A(u) CH (Ricosu)x+ (Rgsinu)y

The parametrisation rangelis< « < 360 degrees.

In the placement coordinate system defined abovellipseis the equatiofi 0, where

Cle,y,2) @*/Ri+y*/R; 1

50 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

axis
‘p[3]
p[2]
ref_direction
V_\'\
= p[1]
Z
location
X Y

Figure 5 — Ellipse

The positive sense of the ellipse at any point is in the tangent dire@idn,the curve at the point, where

T (Cy.Cy,0)

EXPRESS specification

*
)
ENTITY ellipse
SUBTYPE OF (conic);
semi_axis_1 : positive_length_measure;
semi_axis_2 : positive_length_measure;
END_ENTITY;
(*

Attribute definitions

SELF\conic.position: conic.position.locatioris the centre of the ellipse,
andconic.position.p[1]the direction of thesemi_axis_1

semi_axis_1:The first radius of the ellipse which shall be positive.

(©ISO 2000 — All rights reserved 51

ISO 10303-42:2000(E)

semi_axis_2:The second radius of the ellipse which shall be positive.

NOTE - See Figure 5 for interpretation of attributes.

4.4.28 hyperbola

A hyperbola is a conic section defined by the lengths of the major and minor radii and the position
(mid-point of the line joining two foci) and orientation of the curve. Interpretation of the data shall be as
follows:

C = position.location
x = position.p[1]
y = position.p[2]
7z = position.p[3]
Ry = semi_axis
Ry, = semi_imag_axis

and the hyperbola is parametrised as
A(u) CH (Rycoshu)x+ (Rysinhu)y

The parametrisation range iso < u < oo.

In the placement coordinate system defined above, the hyperbola is represented by the €quatjon
where
Clz,y.2) /Ry y*/RS 1

The positive sense of the hyperbola at any point is in the tangent dire@tjdn,the curve at the point,
where
T (Cy.Cy,0)

The branch of the hyperbola represented is that pointed to bydivection.

EXPRESS specification

%)
ENTITY hyperbola
SUBTYPE OF (conic);

semi_axis . positive_length_measure;
semi_imag_axis : positive_length_measure;
END_ENTITY;

(*

52 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

p[3]
p[2]
semi_imag
axis
p[1]
Z —A
\ semi_axis
ref_direction
X Y
Figure 6 — Hyperbola
Attribute definitions

SELF\conic.position: The location and orientation of the curve.
conic.position.locationis the centre of the hyperbola aodnic.position.p[1]is in the direction of the
semi-axis. The branch defined is on the sidpadition.p[1] positive.

semi_axis: The length of the semi-axis of the hyperbola. This is positive and is half the minimum
distance between the two branches of the hyperbola.

semi_imag_axis:The length of the semi-imaginary axis of the hyperbola which shall be positive.

NOTE - See Figure 6 for interpretation of attributes.

Formal propositions

WRZ1: The length of thesemi_axisshall be greater than zero.

WR2: The length of thesemi_imag_axishall be greater than zero.

4.4.29 parabola

A parabolais a conic section defined by its focal length, position (apex), and orientation.

(©ISO 2000 — All rights reserved 53

ISO 10303-42:2000(E)

o[2] ref_direction

location

B X

Figure 7 — Parabola

Interpretation of the data shall be as follows:

C = position.location
x = position.p[1]

y = position.p[2]

7z = position.p[3]

' = focal _dist

and the parabola is parametrised as
Au) CH F(u?x + 2uy)
The parametrisation range iso < u < oo.

In the placement coordinate system defined above, the parabola is represented by the@quation
where

Clz,y,z) 4Fz y?

The positive sense of the curve at any pointis in the tangent dire@ia,the curve at the point, where

T (Cy.Cy,0)

54 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY parabola
SUBTYPE OF (conic);
focal_dist : length_measure;
WHERE
WR1: focal_dist <> 0.0;
END_ENTITY;

(*

Attribute definitions

SELF\conic.position: The location and orientation of the cunaanic.position.locationis the apex of
the parabola andonic.position.p[1]is the axis of symmetry.

focal_dist: The distance of the focal point from the apex point.

NOTE - See Figure 7 for interpretation of attributes.

Formal propositions

WR1: The focal distance shall not be zero.

4.4.30 clothoid

A clothoid is a planar curve in the form of a spiral. This curve has the property that the curvature varies
linearly with the arc length.
Interpretation of the data shall be as follows:

C position.location
x = position.p[1]

y = position.p[2]

A = clothoid_constant

and theclothoid is parametrised as

Alu) CH+ A\/E(/Ou COS(T%)dt X + /Ou sin(ﬂ'%)dt y)

The parametrisation range iso < u < oo.
The arc lengtly of the curve, from the poirt, is given by the formula:

s Aur

The curvatures and radius of curvaturg, at any point of the curve, are related to the arc length by the
formulae:

e

(©ISO 2000 — All rights reserved 55

ISO 10303-42:2000(E)

NOTE 1- A more detailed description of the clothoid curve can be found in [3].

EXPRESS specification

)
ENTITY clothoid
SUBTYPE OF (curve);

position . axis2_placement;
clothoid_constant : length_measure;
END_ENTITY;
(*
Attribute definitions

position: The location and orientation of trodothoid.
position.locationis the point on the clothoid with zero curvature.
position.p[1] is the direction of the tangent to the curve at this point.

NOTE - If positionis of typeaxis2_placement_2dhe clothoid is defined in a two dimensional space.

clothoid_constant: The constant which defines the relationship between curvature and arc length for
the curve.

NOTE - See Figure 8 for interpretation of attributes.

4.4.31 bounded_curve

A bounded_curveis acurve of finite arc length with identifiable end points.

NOTE 1- bounded_curveis not included in the ONEOF list for curve and, as such, has an implicit and/or
relationship with other subtypes of curve. The only complex instances intended to be crediedrated -
pcurve andbounded_surface_curve

EXPRESS specification

*
)
ENTITY bounded_curve
SUPERTYPE OF (ONEOF(polyline, b_spline_curve, trimmed_curve,
bounded_pcurve, bounded_surface_curve, composite_curve))
SUBTYPE OF (curve);
END_ENTITY;

(*

56 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

ref_direction

location

Figure 8 — Clothoid curve

Informal propositions

IP1: A bounded curve has finite arc length.
IP2: A bounded curve has a start point and an end point.
4.4.32 polyline

A polyline is abounded_curveof » 1 linear segments, defined by a list:opoints,
P17 P27 3 Pn

Theith segment of the curve is parametrised as follows:
Alw) Pt w)+Pip(u+1 9, for 1<i<n 1

where: 1 < u < ¢ and with parametric range 6f< v <n 1.

(©ISO 2000 — All rights reserved

57

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY polyline
SUBTYPE OF (bounded_curve);
points : LIST [2:?] OF cartesian_point;
END_ENTITY;

(*

Attribute definitions

points: Thecartesian_poins defining theolyline.

4.4.33 b_spline_curve

A B-spline curve is a piecewise parametric polynomial or rational curve described in terms of control
points and basis functions. The B-spline curve has been selected as the most stable format to represent
all types of polynomial or rational parametric curves. With appropriate attribute values it is capable of
representing single span or spline curves of explicit polynomial, rational, Bézier or B-spline type. The
b_spline_curvehas three special subtypes where the knots and knot multiplicities can be derived to
provide simple default capabilities.

NOTE 1- Identification of B-spline curve default values and subtypes is important for performance con-
siderations and for efficiency issues in performing computations.

NOTE 2 - A B-spline igrational if and only if the weights are not all identical; this can be represented by
therational_b_spline_curvesubtype. If it is polynomial, the weights may be defaulted to all being 1.

NOTE 3- In the case where the B-spline curve is uniform, quasi-uniform or Bézier (including piecewise
Bézier), the knots and knot multiplicities may be defaulted (i.e., non-existent in the data as specified by the
attribute definitions).

NOTE 4- When the knots are defaulted, a difference of 1.0 between separate knots is assumed, and the
effective parameter range for the resulting curve starts from 0.0. These defaults are provided by the subtypes.

NOTE 5- The knots and knot multiplicities shall not be defaulted in the non-uniform case.
NOTE 6 - The defaulting of weights and knots are done independently of one another.

NOTE 7- Definitions of the B-spline basis function&' () can be found in [[1], [2], [4], [5]]. It should
be noted that there is a difference in terminology between these references.

Interpretation of the data is as follows:

58 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)
a) The curve, in the polynomial case, is given by:
k
A(w) > PN (u)
i 0

b) Inthe rational case all weights shall be positive and the curve is given by:

k w,P; N (u
A(u) Zz kO % ()

i 0 wiNZ»d(u)
where
k+1 = number of control points,
P; = control points,
w; = weights, and
= degree.

The knot array is an array @k + d + 2) real number$u 4, ,ux4+1], such that for all indiceg
in[d,k],u; < u;q;. This array is obtained from thinots list by repeating each nitiple knot
according to the mitiplicity. N¢, theith normalised B-spline basis function of degrkés defined
on the subset; 4, ,wu;1q] Of this array.

c) LetL denote the number of distinct values amongstdhek + 2 knots in the knot list will be

referred to as the ‘upper index on knots’. ket denote the multiplicity (i.e., number of repetitions)
of the jth distinct knot. Then:

L
Somi d+k+2
: 1

All knot multiplicities except the first and the last shall be in the rahge , d; the first and last
may have a maximum value d@f+ 1.

In evaluating the basis functions, a knoof, e.g., multiplicity3 is interpreted as a sequence:, «,
in the knot array.

Theb_spline_curvehas three special subtypes where the knots and knot multiplicities are derived
to provide simple default capabilities.

NOTE 8- See Figure 9 for further information on curve definition.

EXPRESS specification

%)
ENTITY b_spline_curve
SUPERTYPE OF (ONEOF(uniform_curve, b_spline_curve_with_knots,
quasi_uniform_curve, bezier_curve)

(©ISO 2000 — All rights reserved 59

ISO 10303-42:2000(E)

\— control_point

Figure 9 — B-spline curve

ANDOR rational_b_spline_curve)
SUBTYPE OF (bounded_curve);

degree . INTEGER;
control_points_list : LIST [2:?] OF cartesian_point;
curve_form . b_spline_curve_form;
closed_curve . LOGICAL;
self_intersect . LOGICAL;

DERIVE

upper_index_on_control_points : INTEGER
= (SIZEOF(control_points_list) - 1);
control_points : ARRAY [O:upper_index_on_control_points]
OF cartesian_point
:= list_to_array(control_points_list,0,
upper_index_on_control_points);
WHERE
WR1: (GEOMETRY_SCHEMA.UNIFORM_CURVE’ IN TYPEOF(self)) OR
(GEOMETRY_SCHEMA.QUASI_UNIFORM_CURVE’ IN TYPEOF(self)) OR
(GEOMETRY_SCHEMA.BEZIER_CURVE’ IN TYPEOF(self)) OR
(GEOMETRY_SCHEMA.B_SPLINE_CURVE_WITH_KNOTS' IN TYPEOF(self));
END_ENTITY;

(*

Attribute definitions

NOTE 9- Where part of the data is described as ‘for information only’ this implies that if there is any
discrepancy between this information and the properties derived from the curve itself, the curve data takes

precedence.

degree: The algebraic degree of the basis functions.

60 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

control_points_list: The list of control points for the curve.

curve_form: Used to identify particular types of curve; it is for information only. (See 4.3.3 for details).
closed_curve: Indication of whether the curve is closed,; it is for information only.

self_intersect: Flag to indicate whether the curve self-intersects or not; it is for information only.
SELF\geometric_representation_item.dim: The dimensionality of the coordinate space for the curve.

upper_index_on_control_points: The upper index on the array of control points; the lower index is O.
This value is derived from theontrol_points_list.

control_points: The array of control points used to define the geometry of the curve. This is derived
from the list of control points.

Formal propositions

WR1: Any instantiation of this entity shall include one of the subtypes
b_spline_curve_with_knots uniform_curve, quasi_uniform_curveor bezier_curve

4.4.34 b_spline_curve_with_knots

This is the type ob_spline_curvefor which the knot values are explicitly given. This subtype shall be
used to represent non-uniform B-spline curves and may be used for other knot types.

Let I. denote the number of distinct values amongstithe: + 2 knots in the knot list]. will be referred
to as the ‘upper index on knots’. Let; denote the multiplicity (i.e., number of repetitions) of tfté
distinct knot. Then:

L
Zmi d+k+2

1

All knot multiplicities except the first and the last shall be in the rahge , d; the first and last may
have a maximum value a@f+ 1.

In evaluating the basis functions, a knoof, e.g., multiplicity3 is interpreted as a sequenegu, u, in
the knot array.

EXPRESS specification

*

)

ENTITY b_spline_curve_with_knots
SUBTYPE OF (b_spline_curve);
knot_multiplicities : LIST [2:?] OF INTEGER,;

(©ISO 2000 — All rights reserved 61

ISO 10303-42:2000(E)

knots : LIST [2:?] OF parameter_value;
knot_spec . knot_type;
DERIVE
upper_index_on_knots : INTEGER := SIZEOF(knots);
WHERE

WRZ1: constraints_param_b_spline(degree, upper_index_on_knots,
upper_index_on_control_points,
knot_multiplicities, knots);

WR2: SIZEOF(knot_multiplicities) = upper_index_on_knots;
END_ENTITY;
(*

Attribute definitions

NOTE - Where part of the data is described as ‘for information only’ this implies that if there is any dis-
crepancy between this information and the properties derived from the curve itself, the curve data takes
precedence.

knot_multiplicities: The multiplicities of the knots. This list defines the number of timash knot in
theknots list is to be repeated in constructing the knot array.

knots: The list of distinct knots used to define the B-spline basis functions.
knot_spec: The description of the knot type. This is for information only.

SELF\b_spline_curve.curve_form: Used to identify particular types of curve; it is for information
only. (See 4.3.3 for details).

SELF\b_spline_curve.degree:The algebraic degree of the basis functions.

SELF\b_spline_curve.closed_curveindication of whether the curve is closed; it is for information
only.

SELF\b_spline_curve.self_intersect:Flag to indicate whether the curve self-intersects or not; it is for
information only.

SELF\geometric_representation_item.dim: The dimensionality of the coordinate space for the curve.

SELF\b_spline_curve.upper_index_on_control_points:The upper index on the array of control points;
the lower index is 0. This value is derived from the list of control points

upper_index_on_knots: The upper index on the knot arrays; the lower index is 1.

SELF\b_spline_curve.control_points: The array of control points used to define the geometry of the
curve. This is derived from the list of control points.

Formal propositions

WR1: constraints_param_b_splinereturns TRUE if no inconsistencies in the parametrisation of the
B-spline are found.

62 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

WR2: The number of elements in the knot multiplicities list shall be equal to the number of elements in
the knots list.

4.4.35 uniform_curve

This is a special type di_spline_curvein which the knots are evenly spaced. Suitable default values
for the knots and knot multiplicities are derived in this case.

A B-spline isuniformif and only if all knots are of multiplicity 1 and they differ by a positive constant
from the preceding knot. In this subtype the knot spacing is 1.0, starting,atthered is the degree.

NOTE - If the B-spline curve is uniform and degree=1, the B-spline is equivalerpatyéine.

EXPRESS specification

*)
ENTITY uniform_curve

SUBTYPE OF (b_spline_curve);
END_ENTITY;

(*

NOTE - The value k_up may be required for the upper index on the knot and knot multiplicity lists. This
is computed from the degree and the number of control points.

k_up SELF\b_spline_curve upper_index_on_control_points + degree + 2

If required, the knots and knot multiplicities can be computed by the function calls:
default_b_spline_knot¢SELF\b_spline_curve.degree, k_up,uniform_knots),
default_b_spline_knot_mul{SELF\b_spline_curve.degree,k_up, uniform_knots).

4.4.36 guasi_uniform_curve

This is a special type di_spline_curvein which the knots are evenly spaced, and except for the first
and last, have multiplicity 1. Suitable default values for the knots and knot multiplicities are derived in
this case.

A B-spline isquasi-uniformif and only if the knots are of multiplicity (degree+1) at the ends, of mul-
tiplicity 1 elsewhere, and they differ by a positive constant from the preceding knot. A quasi-uniform
B-spline curve which has only two knots represents a Bézier curve. In this subtype the knot spacing is
1.0, starting at 0.0.

EXPRESS specification

)

(©ISO 2000 — All rights reserved 63

ISO 10303-42:2000(E)

ENTITY quasi_uniform_curve
SUBTYPE OF (b_spline_curve);
END_ENTITY;

(*

NOTE - The value k_up may be required for the upper index on the knot and knot multiplicity lists. This
is computed from the degree and the number of control points.

k_up SELF\b_spline_curve upper_index_on_control_points degree + 2

If required, the knots and knot multiplicities can then be computed by the function calls:
default_b_spline_knot¢SELF\b_spline_curve.degree,k_up, quasi_uniform_knots)
default_b_spline_knot_mul{SELF\b_spline_curve.degree,k_up, quasi_uniform_knots).

4.4.37 bezier curve

This subtype represents in the most general case a piecewise Bézier curve. This is a special type of curve
which can be represented as a typédos$pline_curvein which the knots are evenly spaced and have
high multiplicities. Suitable default values for the knots and knot multiplicities are derived in this case.

A B-spline curve is a piecewise Bézier curve if it is quasi-uniform except that the interior knots have
multiplicity degreerather than having multiplicity one. In this subtype the knot spacing is 1.0, starting
at 0.0. A piecewise Bézier curve which has only two knots, 0.0 and 1.0, eachtgilioily (degree+1),

is a simple Bézier curve.

NOTE 1- A simple Bézier curve can be defined as a B-spline curve with knots by the following data:

degree q)

upper index on control points (equaldp

control points { + 1 cartesian points)

knot type (equal to quasi-uniform knots)
knot multiplicities d+1d+1)

knots (0.0, 1.0)

No other data are needed, except for a rational Bézier curve. In this case the weightg dataREALS)
shall be given.

NOTE 2 - It should be noted that every piecewise Bézier curve has an equivalent representation as a B-
spline curve. Because of problems witbn-uniform knots not every B-spline curve can be represented as a
piecewise Bézier curve.

To define a piecewise Bézier curve as a B-spline:

— Thefirst knotis 0.0 with multiplicity{ + 1).

— The next knot is 1.0 with multiplicity (the knots for one segment are now defined, unless it is the last
one).

64 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— The next knot is 2.0 with multiplicityl (the knots for two segments are now defined, unless the second
is the last one).

— Continue to the end of the last segment, call itithth segment, at the end of which a knot with value
n, multiplicity (d + 1) is added.

EXAMPLE 1 A one-segment cubic Bézier curve would have knot sequence (0,1) with multiplicity se-
guence (4,4).

EXAMPLE 2 A two-segment cubic piecewise Bézier curve would have knot sequence (0,1,2) with multi-
plicity sequence (4,3,4).

NOTE 3- Forthe piecewise Bézier cased i the degree; + 1 is the number of control points; is the
number of knots with multiplicityl, and N is the total number of knots for the spline, then

(d+2+k) N
(d+1)+md+ (d+1)
thus m (k d)/d

Thus, the knot sequence(i¢ 1 m (m + 1)) with multiplicities(d + 1 d dd+1).

EXPRESS specification

)
ENTITY bezier_curve

SUBTYPE OF (b_spline_curve);
END_ENTITY;

(*

NOTE 4 - The value k_up may be required for the upper index on the knot and knot multiplicity lists. This
is computed from the degree and the number of control points.

SELF\b_spline_curve upper_index_on_control_points 41

k
P SELF\b_spline_curve degree

If required, the knots and knot multiplicities can then be computed by the function calls:
default_b_spline_knot¢SELF\b_spline_curve.degree,k_up, piecewise_bezier_knots)
default_b_spline_knot_mul{SELF\b_spline_curve.degree,k_up, piecewise_bezier_knots).

4.4.38 rational_b_spline_curve

A rational_b_spline_curveis a piecewise parametric rational curve described in terms of control points
and basis functions. This subtype is instantiated with one of the other subtypesptihe _curvewhich
explicitly or implicitly provide the knot values used to define the basis functions.

(©ISO 2000 — All rights reserved 65

ISO 10303-42:2000(E)

All weights shall be positive and the curve is given by:

A(u) % d
>0 o wilN i (u)

(3

where
k41 = number of control points,
P; = control points,
w; = weights, and
= degree.

EXPRESS specification

)

ENTITY rational_b_spline_curve
SUBTYPE OF (b_spline_curve);
weights_data : LIST [2:?] OF REAL;

DERIVE
weights : ARRAY [O:upper_index_on_control_points] OF REAL
= list_to_array(weights_data,0,
upper_index_on_control_points);
WHERE

WR1: SIZEOF(weights_data) = SIZEOF(SELF\b_spline_curve.
control_points_list);
WR2: curve_weights_positive(SELF);
END_ENTITY;

(*

Attribute definitions

NOTE - Where part of the data is described as ‘for information only’ this implies that if there is any dis-
crepancy between this information and the properties derived from the curve itself the curve data takes prece-
dence.

weights_data: The supplied values of the weights. See the derived attribaights
SELF\b_spline_curve.degree:The algebraic degree of the basis functions.

SELF\b_spline_curve.curve_form: Used to identify particular types of curve; it is for information
only. (See 4.3.3 for details.)

SELF\b_spline_curve.closed_curveindication of whether the curve is closed; it is for information
only.

SELF\b_spline_curve.self_intersect:Flag to indicate whether the curve self-intersects or not; it is for
information only.

SELF\b_spline_curve.upper_index_on_control_points:The upper index on the array of control points;
the lower index is 0. This value is derived from the list of control points

66 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

SELF\b_spline_curve.control_points: The array of control points used to define the geometry of the
curve.This is derived from the list of control points

weights: The array of weights associated with the control points. This is derived fromelghts_data

Formal propositions

WRZ1: There shall be the same number of weights as control points.

WR2: All the weights shall have values greater than 0.0.

4.4.39 trimmed_curve

Atrimmed curve is a bounded curve which is created by taking a selected portion, between two identified
points, of the associated basis curve. The basis curve itself is unaltered and more than one trimmed curve
may reference the same basis curve. Trimming points for the curve may be identified:

— by parametric value;
— by geometric position;
— by both of the above.

At least one of these shall be specified at each end of the curveserisemakes it possible to unam-
biguously define any segment of a closed curve such as a circle. The combinations of sense and ordered
end points make it possible to define four distinct directed segments connecting two different points on
a circle or other closed curve. For this purpose cyclic properties of the parameter range are assumed; for
example, 370 degrees is equivalent to 10 degrees.

The trimmed curve has a parametrisation which is inherited from that of the particular basis curve refer-
enced. More precisely the parametasf the trimmed curve is derived from the parametef the basis
curve as follows:

If senseis TRUEs ¢
If senseis FALSEs ¢; ¢

In the above equations is the value given by trim_1 or the parameter value corresponding to point_1
andt, is the parameter value given by trim_2 or the parameter corresponding to point_2. The resultant
trimmed curve has a parameteranging from 0 at the first trimming point o, ¢,| at the second
trimming point.

NOTE 1- Inthe case of a closed basis curve, it may be necessary to increneent by the parametric
length for consistency with the sense flag.

(©ISO 2000 — All rights reserved 67

ISO 10303-42:2000(E)

NOTE 2 - For example:
(a) If sense_agreemert TRUE andt, < 1, 2 should be increased by the parametric length.
(b) If sense_agreement FALSE andt; < t», t; should be increased by the parametric length.

EXPRESS specification

)
ENTITY trimmed_curve
SUBTYPE OF (bounded_curve);

basis_curve . curve;
trim_1 : SET[1:2] OF trimming_select;
trim_2 : SET[1:2] OF trimming_select;
sense_agreement : BOOLEAN;
master_representation : trimming_preference;

WHERE

WR1: (HIINDEX(trim_1) = 1) OR (TYPEOF(trim_1[1]) <> TYPEOF(trim_1[2]));
WR2: (HIINDEX(trim_2) = 1) OR (TYPEOF(trim_2[1]) <> TYPEOF(trim_2[2]));
END_ENTITY;
(*
Attribute definitions

basis_curve: Thecurve to be trimmed. For curves with multiple representations any parameter values
given agtrim_1 or trim_2 refer to the master representation of Hasis_curveonly.

trim_1: The first trimming point which may be specified as a cartesian point (point_1), as a real param-
eter value (parameter_1t¥), or both.

trim_2: The second trimming point which may be specified as a cartesian point (point_2), as a real
parameter value (parameter_253, or both.

sense_agreementFlag to indicate whether the direction of the trimmed curve agrees with or is opposed
to the direction obasis_curve

— sense agreement TRUE if the curve is being traversed in the direction of increasing parametric
value;

— sense agreement FALSE otherwise. For an open curve, sense agreemdfALSE if t; > ¢ If
ts > ty, sense agreement TRUE. The sense information is redundant in this case but is essential
for a closed curve.

master_representation: Where both parameter and point are present at either end of the curve this
indicates the preferred form. Multiple representations provide the ability to communicate data in more
than one form, even though the data are expected to be geometrically identical. (See 4.3.9.)

NOTE 3- The master_representation attribute acknowledges the impracticality of ensuring that multiple
forms are indeed identical and allows the indication of a preferred form. This would probably be determined
by the creator of the data. All characteristics, such as parametrisation, domain, and results of evaluation, for

68 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

an entity having multiple representations, are derived from the master representation. Any use of the other
representations is a compromise for practical considerations.

Formal propositions

WRZ1: Either a single value is specified foim_1, or, the two trimming values are of different types
(point and parameter).

WR2: Either a single value is specified faim_2, or, the two trimming values are of different types
(point and parameter).

Informal propositions

IP1: Where both the parameter value and the cartesian point exisirforl or trim_2 they shall be
consistent, i.e., thbasis_curveevaluated at the parameter value shall coincide with the specified point.

IP2: When a cartesian point is specifiedtoyn_1 or bytrim_2, it shall lie on thebasis_curve

IP3: Except in the case of a closbdsis_curve where both parameter_1 and parameter_2 exist, they
shall be consistent with the sense flag, i.e., sense = (parametgradameter_2).

IP4: If both parameter_1 and parameter_2 exist, parameter- parameter_2.

IP5: When a parameter value is specifiedtbgn_1 or trim_2, it shall lie within the parametric range
of thebasis_curve

4.4.40 composite_curve

A composite_curveis a collection of curves joined end-to-end. The individual segments of the curve
are themselves defined asmposite_curve_segmest The parametrisation of the composite curve

is an accumulation of the parametric ranges of the referenced bounded curves. The first segment is
parametrised from 0 th, and, for; > 2, thei!" segment is parametrised from

i1 i
Z I to Z Iy,
ko1 ko1
wherel, is the parametric length (i.e., difference between maximum and minimum parameter values)
of the curve underlying thé!” segment. Lef” denote the parameter for tkemposite_curve Then,

if the ith segment is not eeparametrised_composite_curve_segment’ is related to the parameter
t;, tio <t; <t;, forthe:th segment by the equation:

v 1
T D i+t to,
ko1

if segments[i].same_senseTRUE;
or by the equation:

v 1
T > lhitta b,
ko1

(©ISO 2000 — All rights reserved 69

ISO 10303-42:2000(E)

if segments[i].same_senseFALSE.

If segmentsiijis of typereparametrised_composite_curve_segment

v 1
T Z Iy + T,
ko1
Wherer is defined in 4.4.42.
EXPRESS specification
%)
ENTITY composite_curve
SUBTYPE OF (bounded_curve);
segments . LIST [1:?] OF composite_curve_segment;
self_intersect : LOGICAL;
DERIVE
n_segments : INTEGER := SIZEOF(segments);
closed_curve : LOGICAL

= segments[n_segments].transition <> discontinuous;
WHERE
WR1: ((NOT closed_curve) AND (SIZEOF(QUERY(temp <* segments |
temp.transition = discontinuous)) = 1)) OR
((closed_curve) AND (SIZEOF(QUERY (temp <* segments |
temp.transition = discontinuous)) = 0));
END_ENTITY;

(*

Attribute definitions

n_segments: The number of component curves.

segments: The component bounded curves, their transitions and senses. The transition attribute for the
last segment defines the transition between the end of the last segment and the start of the first; this
transition attribute may take the valdescontinuous which indicates an open curve. (See 4.3.8).

self_intersect: Indication of whether the curve intersects itself or not; this is for information only.

dim: The dimensionality of the coordinate space for the composite curve. This is an inherited attribute
from the geometric representation item supertype.

closed_curve: Indication of whether the curve is closed or not; this is derived from the transition code
on the last segment.

NOTE - See Figure 10 for further information on attributes.

70 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

dlscontlnuous

continuous
cont_same grodent/ ;

cont_same_gradient_same_curvature

Figure 10 — Composite_curve

Formal propositions

WRZ1: No transition code shall be discontinuous, except for the last code of an open curve.

Informal propositions

IP1: Thesame_sensattribute of each segment correctly specifies the senses of the component curves.
When traversed in the direction indicateddgme_senseahe segments shall join end-to-end.

4.4.41 composite_curve_segment

A composite_curve_segmeris a bounded curve together with transition information which is used to
construct e&composite_curve

EXPRESS specification

*

)

ENTITY composite_curve_segment

SUBTYPE OF (founded_item);
transition . transition_code;
same_sense . BOOLEAN,;
parent_curve : Ccurve;

(©ISO 2000 — All rights reserved 71

ISO 10303-42:2000(E)

INVERSE

using_curves : BAG[1l:?] OF composite_curve FOR segments;
WHERE

WR1 : (GEOMETRY_SCHEMA.BOUNDED CURVE' IN TYPEOF(parent_curve));
END_ENTITY;

(*

Attribute definitions

transition: The state of transition (i.e., geometric continuity from the last point of this segment to the
first point of the next segment) in a composite curve.

same_senseAn indicator of whether or not the sense of the segment agrees with, or opposes, that of
the parent curve. kame_sensis false, the point with highest parameter value is taken as the first point
of the segment.

parent_curve: The bounded curve which defines the geometry of the segment.

NOTE - Sincecomposite_curve_segmenis not a subtype ofjeometric_representation_itemthe in-
stance ofbounded_curveused agarent_curve is not automatically associated with theometric_rep-
resentation_contextof the representation using acomposite_curvecontaining thiscomposite_curve_-
segment It is therefore necessary to ensure that blbended_curveinstance is explicitly included in a
representation with the appropriatgeometric_representation_context

using_curves: The set oftomposite_curve which use thi€omposite_curve_segmerds a segment.
This set shall not be empty.

Formal propositions

WR1: Theparent_curve shall be bounded_curve

4.4.42 reparametrised_composite_curve_segment

Thereparametrised_composite_curve_segmerg a special type of
composite_curve_segmentvhich provides the capability to re-define its parametric length without
changing its geometry.
Let!/ = param_length.

If to <t <ty isthe parameter range pérent_curve, the new parameter for thereparametrised_-
composite_curve_segmerns given by the equation:

t 1o
T ,
1 1o
if same_sense TRUE;
or by the equation:
t1 ¢
T ,
t1 o

if same_sense FALSE.

72 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*

)

ENTITY reparametrised_composite_curve_segment
SUBTYPE OF (composite_curve_segment);
param_length : parameter_value;

WHERE
WR1: param_length > 0.0;

END_ENTITY;

(*

Attribute definitions

param_length: The new parametric length of the segment. The segment is given a simple linear
reparametrisation from 0.0 at the first pointgaram_length at the last point. The parametrisation
of the composite curve constructed using this segment is defined in tepasaoh_length.

Formal propositions

WR1: Theparam_lengthshall be greater than zero.

4.4.43 pcurve

A pcurve is a 3D curve defined by means of a 2D curve in the parameter space of a surface. If the
curve is parametrised by the functi¢n, v) f(¢), and the surface is parametrised by the function
(z,y,2) g¢(u,v), thepcurve is parametrised by the functidm, y, z) g(f(¢)).

A pcurve definition contains a reference to basis_surfaceand an indirect reference to a 2D curve
through adefinitional_representation entity. The 2D curve, being in parameterasp, is not in the
context of the basis surface. Thus a direct reference is not possible. For the 2D curve the variables
involved arex andv, which occur in the parametric representation ofltheis_surfacerather thane, y
Cartesian coordinates. The curve is only defined within the parametric range of the surface.

EXPRESS specification

%)
ENTITY pcurve
SUBTYPE OF (curve);

basis_surface . surface;
reference_to_curve : definitional_representation;
WHERE

WR1: SIZEOF(reference_to_curve\representation.items) = 1;
WR2: 'GEOMETRY_SCHEMA.CURVE' IN TYPEOF

(©ISO 2000 — All rights reserved 73

ISO 10303-42:2000(E)

(reference_to_curvelrepresentation.items[1]);
WR3: reference_to_curvelrepresentation.items[1]\
geometric_representation_item.dim =2;
END_ENTITY;

(*

Attribute definitions

basis_surface: The surface in whose parameter space the curve is defined.

reference_to_curve: The reference to the parameter space curve which defingstinee.

Formal propositions

WR1: The set of items in thdefinitional_representationentity corresponding to theference_to_-
curve shall have exactly one element.

WR2: The unique item in the set shall be a curve.

WR3: The dimensionality of this parameter space curve shall be 2.

4.4.44 bounded_pcurve

A bounded_pcurveis special type opcurve which also has the properties obaunded_curve

EXPRESS specification

*
)
ENTITY bounded_pcurve
SUBTYPE OF (pcurve, bounded_curve);
WHERE
WR1: (GEOMETRY_SCHEMA.BOUNDED_CURVE’ IN
TYPEOF(SELF\pcurve.reference_to_curve.items[1]));
END_ENTITY;

(*

Formal propositions

WR1: The referenced curve of tipeurve supertype shall be of tygmunded_curve This ensures that
thebounded_pcurveis of finite arc length.

74 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.4.45 surface_curve

A surface_curveis a curve on a surface. The curve is represented as a couvee(3d in three-
dimensional space and possibly as a curve, corresponding to a pcurve, in the two-dimensional paramet-
ric space of a surface. Theilty of this curve to reference a list of 1 orf&curve_or_surfaces enables

this entity to define either a curve on a single agd, or an intersection curve which has two distinct
surface associations. A ‘seam’ on a closed surface can also be represented by this entity; in this case
eachassociated_geometrwill be a pcurve lying on the same surface. Eachirve, if it exists, shall be
parametrised to have the same senseuage_3d The surface curve takes its parametrisation directly
from eithercurve_3dor pcurve as indicated by the attribute master representation.

NOTE - Because of the ANDOR relationship with theunded_surface_curvesubtype an instance of a
surface_curvemay be any one of the following:

— asurface_curve

— abounded_surface_curve

— anintersection_curve

— anintersection_curve AND bounded_surface_curve
— aseam_curve

— aseam_curveAND bounded_surface_curve

EXPRESS specification

*
)
ENTITY surface_curve
SUPERTYPE OF (ONEOF(intersection_curve, seam_curve) ANDOR
bounded_surface_curve)
SUBTYPE OF (curve);

curve_3d . curve;

associated_geometry : LIST[1:2] OF pcurve_or_surface;

master_representation : preferred_surface_curve_representation;
DERIVE

basis_surface . SET[1:2] OF surface

:= get_basis_surface(SELF);
WHERE
WR1: curve_3d.dim = 3;
WR2: (GEOMETRY_SCHEMA.PCURVE’' IN TYPEOF(associated_geometry[1])) OR
(master_representation <> pcurve_sl);
WR3: (GEOMETRY_SCHEMA.PCURVE’' IN TYPEOF(associated_geometry[2])) OR
(master_representation <> pcurve_s2);
WR4: NOT (GEOMETRY_SCHEMA.PCURVE’' IN TYPEOF(curve_3d));
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 75

ISO 10303-42:2000(E)

Attribute definitions

curve_3d: The curve which is the three-dimensional representation ofuhface_curve

associated_geometryA list of one or two pcurves or surfaces which define the surface or surfaces
associated with the surface curve. Two elements in this list indicate that the curve has two surface
associations which need not be two distinct surfaces. When a pcurve is selected, it identifies a surface
and also associates a basis curve in the parameter space of this surface.

master_representation: Indication of representation “preferred”. Theaster_representationdefines

the curve used to determine the unique parametrisation ciutiace curve

The master_representationtakes one of the valuesurve_3d, pcurve_slor pcurve_s2to indicate a
preference for the 3D curve, or the first or second pcurve, in the associated geometry list, respectively.
Multiple representations provide the ability to communicate data in more than one form, even though the
data is expected to be geometrically identical.

NOTE - Themaster_representationattribute acknowledges the impracticality of ensuring that multiple
forms are indeed identical and allows the indication of a preferred form. This would probably be determined
by the creator of the data. All characteristics, such as parametrisation, domain, and results of evaluation, for
an entity having multiple representations, are derived from the master representation. Any use of the other
representations is a compromise for practical considerations.

basis_surface: The surface, or surfaces on which s&face_curvelies. This is determined from the
associated_geometriist.

Formal propositions

WR1: curve_3dshall be defined in three-dimensional space.

WR2: pcurve_slshall only be nominated as the master representation if the first element of the associ-
ated geometry listis a pcurve.

WR3: pcurve_s2shall only be nominated as the master representation if the second element of the
associated geometry list is a pcurve. This also requiregpthate_s2shall not be nominated when the
associated geometry list contains a single element.

WRA4: curve_3dshall not be gcurve.

Informal propositions

IP1: Wherecurve_3dand one or mor@curves exist they shall represent the same mathematical point
set. (i.e., They shall coincide geometrically but may differ in parametrisation.)

IP2: curve_3dand any associated pcurves shall agree with respect to their senses.

76 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.4.46 intersection_curve

An intersection_curveis a curve which results from the intersection of two surfaces. It is represented
as a special subtype of tserface_curveentity having two distinct surface associations defined via the
associated geometry list.

EXPRESS specification

*
)
ENTITY intersection_curve
SUBTYPE OF (surface_curve);
WHERE
WR1: SIZEOF(SELF\surface_curve.associated _geometry) = 2;
WR2: associated_surface(SELF\surface_curve.associated_geometry[1]) <>
associated_surface(SELF\surface_curve.associated_geometry[2]);
END_ENTITY;

(*

Formal propositions

WR1: The intersection curve shall have precisely two associated geometry elements.

WR2: The two associated geometry elements shall be related to distinct surfaces. These are the surfaces
which define the intersection curve.

4.4.47 seam_curve

A seam_curveis a curve on a closed parametric surface which has two distinct representations as con-
stant parameter curves at the two extremes of the parameter range for the surface.

EXAMPLE 1 The ‘seam’ on a cylinder has representations as the tines0 or u 360 degrees in
parameter space.

EXPRESS specification

*
)
ENTITY seam_curve
SUBTYPE OF (surface_curve);
WHERE
WR1: SIZEOF(SELF\surface_curve.associated _geometry) = 2;
WR2: associated_surface(SELF\surface_curve.associated_geometry[1]) =
associated_surface(SELF\surface_curve.associated_geometry[2]);
WR3: 'GEOMETRY_SCHEMA.PCURVE’ IN
TYPEOF(SELF\surface_curve.associated_geometry[1]);

(©ISO 2000 — All rights reserved 77

ISO 10303-42:2000(E)

WR4: 'GEOMETRY_SCHEMA.PCURVE’ IN
TYPEOF(SELF\surface_curve.associated_geometry[2]);
END_ENTITY;

(*

Formal propositions

WR1: The seam curve shall have precisely @mgsociated_geometrsy.
WR2: The twoassociated _geometryshall be related to the same surface.
WR3: The firstassociated_geometrghall be gocurve.

WRA4: The secon@ssociated_geometrghall be gpcurve.

4.4.48 bounded_surface_curve

A bounded_surface_curves a specialised type &furface_curvewhich also has the properties of a
bounded_curve

EXPRESS specification

*
)
ENTITY bounded_surface_curve

SUBTYPE OF (surface_curve, bounded_curve);
WHERE

WR1: (GEOMETRY_SCHEMA.BOUNDED_CURVE’ IN

TYPEOF(SELF\surface_curve.curve_3d));

END_ENTITY;

(*

Formal propositions

WR1: Thecurve_3dattribute of thesurface_curvesupertype shall belaounded_curve

4.4.49 composite_curve_on_surface

A composite_curve_on_surfacis a collection of segments which are curves on a surface. Each segment
shall lie on the basis surface, and shall reference one of:

— abounded_surface_curveor

— abounded_pcurveor

78 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— acomposite_curve_on_surface

NOTE - Acomposite_curve_on_surfacean be included as thgarent_curve attribute of acomposite_-
curve_segmensince it is a bounded curve subtype.

There shall be at least positional continuity between adjacent segments. The parametrisation of the

composite curve is obtained from the accumulation of the parametric ranges of the segments. The first
segment is parametrised from 0/{g and, fori > 2, thes** segment is parametrised from

i1 7
Zlk to Zlk’
k1 k1

wherel}, is the parametric length (i.e., difference between maximum and minimum parameter values) of
thek*” curve segment.

EXPRESS specification

%)

ENTITY composite_curve_on_surface
SUPERTYPE OF(boundary_curve)
SUBTYPE OF (composite_curve);

DERIVE
basis_surface : SET[0:2] OF surface :=
get_basis_surface(SELF);
WHERE
WR1: SIZEOF(basis_surface) > 0;
WR2: constraints_composite_curve_on_surface(SELF);
END_ENTITY;

(*

Attribute definitions

basis_surface: The surface on which the composite curve is defined.
SELF\composite_curve.n_segmentsThe number of component curves.

SELF\composite_curve.segmentsThe component bounded curves, their transitions and senses. The
transition for the last segment defines the transition between the end of the last segment and the start of
the first; this element may take the valdiscontinuous which indicates an open curve. (See 4.3.8.)

For each segment thgarent_curve shall be either dounded_pcurve abounded_surface_curveor
acomposite_curve_on_surface

SELF\composite_curve.self_intersectindication of whether the curve intersects itself or not.
SELF\composite_curve.dim: The dimensionality of the coordinate space for the composite curve.

SELF\composite_curve.closed_curvelndication of whether the curve is closed or not.

(©ISO 2000 — All rights reserved 79

ISO 10303-42:2000(E)

Formal propositions

WR1: Thebasis_surfaceSET shall contain at least one surface. This ensures that all segments reference
curves on the same surface.

WR2: Each segment shall referencpaurve, or asurface_curve or acomposite_curve_on_surface

Informal propositions

IP1: Eachparent_curve referenced by @omposite_curve_on_surfaceegment shall be a curve on
surface and a bounded curve.

4.4.50 offset_curve_2d

An offset_curve_2dis a curve at a constant distance from a basis curve in two-dimensional space. This
entity defines a simple plane-offset curve by offsettinglistancealong the normal tdasis_curvein
the plane obasis_curve

The underlying curve shall have a well-defined tangent direction at every point. In the case of a compos-
ite curve, the transition code betweeach segment shall lment_same_gradienbr cont_same_gradi-
ent_same_curvature

NOTE - Theoffset _curve_2dmay differin nature fromthbasis_curve the offset of a non self-intersecting
curve can be self-intersecting. Care should be taken to ensure that the offset to a continuous curve does not
become discontinuous.

Theoffset_curve_2dakes its parametrisation from thasis_curve Theoffset_curve_2ds parametrised
as
A(u) C(u) + d(orthogonal_complement(t)),

wheret is the unit tangent vector to the basis cu@f:) at parameter value, andd is distance The
underlying curve shall be two-dimensional.

EXPRESS specification

%)
ENTITY offset _curve_2d
SUBTYPE OF (curve);

basis_curve . curve;

distance . length_measure;

self_intersect : LOGICAL;
WHERE

WR1: basis_curve.dim = 2;
END_ENTITY;

(*

80 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

basis_curve: The curve that is being offset.

distance: The distance of the offset curve from the basis cudistancemay be positive, negative or
zero. A positive value oflistancedefines an offset in the direction which is normal to the curve in the
sense of an anti-clockwise rotation through 90 degrees from the tangentVetttire given point. (This

is in the direction obrthogonal_complemen(T).)

self_intersect: An indication of whether the offset curve self-intersects; this is for information only.

Formal propositions

WR1: The underlying curve shall be defined in two-dimensional space.

4.4.51 offset_curve 3d

An offset_curve_3dis a curve at a constant distance from a basis curve in three-dimensional space.

The underlying curve shall have a well-defined tangent direction at every point. In the case of a composite
curve the transition code betweeach segment shall lbpent_same_gradienbr cont_same_gradient_-
same_curvature

The offset curve at any point (parameter) on the basis curve is in the diréetignt) wherev is the
fixed reference direction andis the unit tangent to thieasis_curve For the offset direction to be well
defined,t shall not at any point of the curve be in the same, or opposite, direction as

NOTE - Theoffset_curve_3dmay differin nature fromthbasis_curve the offset of a non-self-intersecting
curve can be self-intersecting. Care should be taken to ensure that the offset to a continuous curve does not
become discontinuous.

Theoffset_curve_3dakes its parametrisation from thasis_curve Theoffset_curve_3ds parametrised
as
A(u) C(u)+d{v X t),

wheret is the unit tangent vector to the basis cufvé:) at parameter value, andd is distance

EXPRESS specification

*

)

ENTITY offset _curve_3d
SUBTYPE OF (curve);
basis_curve . curve;
distance . length_measure;
self_intersect : LOGICAL;
ref _direction : direction;

(©ISO 2000 — All rights reserved 81

ISO 10303-42:2000(E)

WHERE

WR1 : (basis_curve.dim = 3) AND (ref_direction.dim = 3);
END_ENTITY;
(*

Attribute definitions

basis_curve: Thecurve that is being offset.

distance: The distance of the offset curve from the basis curve. The distance may be positive, negative
or zero.

self_intersect: An indication of whether the offset curve self-intersects, this is for information only.

ref _direction: Thedirection used to define the direction of tioffset_curve_3dfrom thebasis_curve

Formal propositions

WR1: Both the underlying curve and the reference direction shall be in three-dimensional space.

Informal propositions

IP1: Atno point on the curve shalef_direction be parallel, or opposite to, the direction of the tangent
vector.

4.4.52 curve_replica

A curve_replicais a replica of a curve in a different location. It is defined by referencing the parent
curve and a transformation. The geometric form of the curve produced will be the same as the parent
curve, but, where the transformation includes scaling, the dimensions will differ. The curve replica takes
its parametric range and parametrisation directly from the parent curve. Where the parent curve is a
curve on surface, the replica will not in general share the property of lying on the surface.

EXPRESS specification

)
ENTITY curve_replica
SUBTYPE OF (curve);

parent_curve : curve;
transformation : cartesian_transformation_operator;
WHERE

WR1: transformation.dim = parent_curve.dim;
WR2: acyclic_curve_replica (SELF, parent_curve);

82 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_ENTITY;
(*

Attribute definitions

parent_curve: The curve that is being copied.

transformation: The cartesian transformation operator which defines the location of the curve replica.
This transformation may include scaling.

Formal propositions

WR1: The coordinate space dimensionality of the transformation attribute shall be the same as that of
theparent_curve.

WR2: A curve_replicashall not participate in its own definition.

4.4.53 surface

See 3.2.45 for definition. Aurface can be envisioned as a set of connected points in 3-dimensional
space which is always locally 2-dimensional, but need not be a manifold. A surface shall not be a single
point or in part, or entirely, a curve.

Each surface has a parametric representation of the form
o(u,v),

wherewu andv are independent dimensionless parameters. The unit ndiraablny point on the surface,
is given by the equation
do Jo

N(u,v) <8_u X %>

EXPRESS specification

*
)
ENTITY surface
SUPERTYPE OF (ONEOF(elementary_surface, swept_surface, bounded_surface,
offset_surface, surface_replica))
SUBTYPE OF (geometric_representation_item);
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 83

ISO 10303-42:2000(E)

Informal propositions

IP1: A surfacehas non-zero area.

IP2: A surfaceis arcwise connected.

4.4.54 elementary_surface

An elementary surface is a simple analytic surface with defined parametric representation.

EXPRESS specification

*

)

ENTITY elementary_surface
SUPERTYPE OF (ONEOF(plane, cylindrical_surface, conical_surface,

spherical_surface, toroidal_surface))

SUBTYPE OF (surface);
position : axis2_placement_3d;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the surface. This attribute is used in theitaefinf the
parametrisation of the surface.

4.4.55 plane

A planeis an unbounded surface with a constant normgplake is defined by a point on the plane and
the normal direction to the plane. The data is to be interpreted as follows:

C = position.location

x = position.p[1]

y = position.p[2]

z = position.p[3] (hormal to plane)

and the surface is parametrised as
o(u,v) C+Hux+vy

where the parametrisation range isoc < u,v < oo. In the above parametrisation, the length unit for
the unit vectors andy is derived from the context of the plane.

84 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

)

ENTITY plane

SUBTYPE OF (elementary_surface);
END_ENTITY;

(*

Attribute definitions

SELF\elementary_surface.position: The location and orientation of the surface. This attribute is in-
herited from theelementary_surfacesupertype.

position.location: A pointin the plane.

position.p[3]: This direction, which is equal tposition.axis defines the normal to the plane.

4.4.56 cylindrical_surface

A cylindrical_surfaceis a surface at a constant distance (dius)from a straightline. Acylindrical_-
surfaceis defined by its radius and its orientation and location. The data is to be interpreted as follows:

C = position.location
x = position.p[1]

y = position.p[2]

7z = position.p[3]

R = radius

and the surface is parametrised as
o(u,v) C+H R((cosu)x+ (sinu)y) + vz

where the parametrisation rangeis » < 360 degrees and oo < v < oo. In the above parametrisa-
tion, the length unit for the unit vectaris equal to that of theadius.

In the placement coordinate system defined above, the surface is represented by the &quatipn
where

S(x,y,2) 2> +y* R
The positive direction of the normal to the surface at any point on the surface is given by
(81’7 Sy7 SZ)

The unit normal is given by
N(u,v) (cosu)x+ (sinu)y

The sense of this normal is away from the axis of the cylinder.

(©ISO 2000 — All rights reserved 85

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY
cylindrical_surface
SUBTYPE OF (elementary_surface);
radius : positive_length_measure;
END_ENTITY;

(*

Attribute definitions

SELF\elementary_surface.position: The location and orientation of the cylinder.
position.location: A point on the axis of the cylinder.
position.p[3]: The direction of the axis of the cylinder.

radius: The radius of the cylinder.

4.4.57 conical_surface

A conical_surfaces a surface which could be produced by revolving a line in 3-dimensional space about
any intersecting line. Aonical_surfaceis defined by the semi-angle, the location and orientation and by
the radius of the cone in the plane passing through the location@aintmal to the cone axis.

NOTE 1- This form of representation is designed to provide the greatest geometric precision for those
parts of the surface which are close to the location pairE@ this reason the apex should only be selected
as location point if the region of the surface close to the apex is of interest.

The data is to be interpreted as follows:

C = position.location
= position.p[1]

= position.p[2]

= position.p[3]
radius

= semi_angle

O N < K
|

and the surface is parametrised as
o(u,v) C+ (R+vtana)((cosu)x+ (sinu)y) + vz

where the parametrisation rangeis » < 360 degrees and oo < v < oo. In the above parametrisa-
tion the length unit for the unit vectaris equal to that of theadius.

In the placement coordinate system defined above, the surface is represented by the &quatipn
where
S(x,y,2) 2*+y* (R4 ztana)?

86 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

N

2
ref__direction p[}

Figure 11 — Conical_surface

The positive direction of the normal to the surface at any point on the surface is given by

(81’7 Sy7 SZ)
The unit normal is given by

N (u,v) (cosu)x + (sinu)y (tana)z

. if R+vtana>00

\/m if R+vtana

N(uo) 080X +1(im(:)y)Q(tan D2 i R4 vtana <00
\/ an «&

NOTE 2 - The normal to the surface is undefined at the point wRefevtana 0 0.

The sense of the normal is away from the axis of the cone. If the radius is zero, the cone apex is at the
point(0, 0, 0) in the placement coordinate system (i.eSBLF\elementary_surface.position.locatiopn

EXPRESS specification

)

(©ISO 2000 — All rights reserved 87

ISO 10303-42:2000(E)

ENTITY
conical_surface
SUBTYPE OF (elementary_surface);

radius . length_measure;
semi_angle : plane_angle_measure;
WHERE
WR1: radius >= 0.0;
END_ENTITY;
(*
Attribute definitions

SELF\elementary_surface.position: The location and orientation of the surface.
position.location: The location point on the axis of the cone.
position.p[3]: The direction of the axis of the cone.

radius: The radius of the circular curve of intersection between the cone and a plane perpendicular to the
axis of the cone passing through the location point (6&L.F\elementary surface.position.locatioh

semi_angle: The cone semi-angle.

NOTE 3- See Figure 11 for illustration of the attributes.

Formal propositions

WR1: The radius shall not be negative.

Informal propositions

IP1: The semi-angle shall be between 0 and 90 degrees.

4.4.58 spherical_surface

A spherical surface is a surface which is at a constant distancegdes) from a central point. A
spherical_surfaceis defined by the radius and the location and orientation of the surface.

The data is to be interpreted as follows:

C = position.location (centre)
x = position.p[1]

y = position.p[2]

7z = position.p[3]

R = radius

88 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

and the surface is parametrised as
o(u,v) C+H Rcosv((cosu)x + (sinu)y)+ R(sinv)z
where the parametrisation rangdis. « < 360 degrees and 90 < v < 90 degrees.

In the placement coordinate system defined above, the surface is represented by the &quatipn
where
S(z,y,2) a*+y*+22 R?

The positive direction of the normal to the surface at any point on the surface is given by
(Sz, 8y, Sz)
The unit normal is given by
N(u,v) cosv((cosu)x + (sinu)y) + (sinv)z,

that is, it is directed away from the centre of the sphere.

EXPRESS specification

*
)
ENTITY spherical_surface
SUBTYPE OF (elementary_surface);
radius . positive_length_measure;
END_ENTITY;

(*

Attribute definitions

SELF\elementary_surface.position: The location and orientation of the surface.
position.location: The centre of the sphere.

radius: The radius of the sphere.

4.4.59 toroidal_surface

A toroidal_surfaceis a surface which could be produced by revolving a circle about a line in its plane.
The radius of the circle being revolved is referred to here amiher_radius and themajor_radius is

the distance from the centre of this circle to the axis of revolutiotorAidal_surfaceis defined by the
major and minor radii and the position and orientation of theasexf

(©ISO 2000 — All rights reserved 89

ISO 10303-42:2000(E)

The data is to be interpreted as follows:

C = position.location
x = position.p[1]

y = position.p[2]

7z = position.p[3]

R = major_radius

r = minor_radius

and the surface is parametrised as
o(u,v) C+ (R+rcosv)((cosu)x+ (sinu)y)+ r(sinv)z

where the parametrisation rangdis «, v < 360 degrees.

In the placement coordinate system defined above, the surface is represented by the &quatipn
where
S(x,y,2) 2 +y*+27 2R\ 224y P+ R
The positive direction of the normal to the surface at any point on the surface is given by
(81’7 Sy7 SZ)
The unit normal is given by
N(u,v) cosv((cosu)x + (sinu)y) + (sinv)z

The sense of this normal is away from the nearest point on the circle of r&divgh centreC. A
manifold surface will be produced if the major radius is greater than the minor radius. If this condition
is not fulfilled, the resulting surface will be self-intersecting.

EXPRESS specification

*

)

ENTITY toroidal_surface
SUBTYPE OF (elementary_surface);
major_radius : positive_length_measure;
minor_radius : positive_length_measure;

END_ENTITY;

(*

Attribute definitions

SELF\elementary_surface.position: The location and orientation of the surface.
position.location: The central point of the torus.
major_radius: The major radius of the torus.

minor_radius: The minor radius of the torus.

90 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.4.60 degenerate_toroidal_surface

A degenerate_toroidal_surfacéds a special type of ¢oroidal_surface in which theminor_radius is
greater than thenajor_radius. In this subtype the parametric range is restricted in order to define a
manifold surface which is either the inner 'lemon-shaped’ surface, or the outer 'apple-shaped’ portion of
the self-intersecting surface defined by the supertype.

The data is to be interpreted as follows:

C = position.location
= position.p[1]

= position.p[2]

= position.p[3]

= major_radius

= minor_radius

5 TN <Y K
|

and the surface is parametrised as
o(u,v) C+ (R+rcosv)((cosu)x+ (sinu)y)+ r(sinv)z

where the parametrisation range is :

If select_outer=.TRUE. :
0 < u < 360 degrees.
¢ < v < ¢ degrees.

If select_outer= .FALSE. :
0 < u < 360 degrees.

¢ <wv <360 ¢degrees.

Where¢ degrees is the angle given byos ¢ R.
NOTE 1- Whenselect_outer = .FALSE.the surface normal points out of the enclosed volume and is

defined by the equation
N(u v) cosv((cosu)x + (sinu)y) + (sinv)z

The sense of this normal is away from the furthest point on the circle of radius R in the plane normal to z
centred at C. The sense of this normal is opposite to the directi%%of %—‘j .

NOTE 2 - See Figure 12 for illustration of the attributes.

EXPRESS specification

*

)

ENTITY degenerate_toroidal_surface
SUBTYPE OF (toroidal_surface);
select_outer : BOOLEAN;

WHERE

(©ISO 2000 — All rights reserved 91

ISO 10303-42:2000(E)

z (axis)

o
-

— ‘lemon’

‘apple’ \/

Figure 12 — Cross section of degenerate_toroidal_surface

WR1: major_radius < minor_radius;
END_ENTITY;

(*

Attribute definitions

select_outer: A BOOLEAN flag used to distinguish between the two portions of degenerate_-
toroidal_surface. If select_outeris true, the outer portion of the surface is selected and a closed ‘apple-
shaped’ axi-symmetric surface is definedsdfect_outeris false, the inner portion is selected to define

a closed 'lemon-shaped’ axi-symmetric surface.

Formal propositions

WR1: The major radius shall be less than the minor radius.

92 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.4.61 dupin_cyclide_surface

A dupin_cyclide_surfaceis a generalisation of roidal_surfacein which the radius of the generatrix
varies as itis swept around the directrix, passing through a maximum and a minimum value. The directrix
is in general an ellipse, though that fact is not germane to the definition given here. The surface has two
orthogonal planes of symmetry, and in both of them its cross-section is a pair of circles.

NOTE 1- These circles are illustrated in Figure 13, where the upper cross-section contains the generatrix
circles of maximum and minimum radius, and the lower cross-section is in the plane of the directrix.

NOTE 2 - Further details of the properties and applications of this useful but unfamiliar surface may be
found in [6], [7], and the further references they contain.

As with thetoroidal_surface, self-intersecting forms occur. The Dupin cyclides are special cases of
a more general class of surfaces knowrgaseralized cyclidetor sometimes simplgyclideg. The
present specification does not cover the wider class.

The interpretation of the data is as follows:

= position.location

= position.p[1]

= position.p[2]

= position.p[3]

= generalised_major_radius
= generalised_minor_radius
= skewness

w = Wuwe sz O
|

and the surface is parametrised as

T 1 r(s+ Rcosucosv) + (R2 sz)cosu
o(u,v) y C+ VR? s?sinu(R+ rcosv) ,
z

R+ scosucosv .
VR? s’sinv(r scosu)

where the domain of parametrisatio®fs< «, v < 360°, and\/ denotes the positive square root.

NOTE 3- The three parametersR ands determine the centres and radii of the circles in the planes of
symmetry, as shown in Figure 13. Conversely, knowledge of the geometry of these circles allows the defining
cyclide parameters to be determined. In the upper and lower diagrams respectively of Figure 13 the circles
have parameter values 0° (right), . 180° (left), v 0° (inner) andv 180° (outer). The point

with parameter values (0,0) is the extreme point on the positive x-axis. The parameter u runs anticlockwise
around both circles in the lower diagram, and the parameter v runs clockwise round the left-hand circle and
anticlockwise round the right-hand circle in the upper diagram.

In the placement coordinate system defined above the Dupin cyclide surface has the algebraic represen-
tationS 0, where

S (x2+y2+22—|—R2 r? 82)2 4(Rx rs)2 4(R2 82)y2

(©ISO 2000 — All rights reserved 93

ISO 10303-42:2000(E)

u = 180° Az
r+s —
u=0
Ir-9
IR |R X=
Ay
R+r
+S
' >
X

Figure 13 — Cross-sections of a Dupin cyclide witlC = 0

The positive direction of the normal vector at any point on the surface is given by
(81’7 Sy7 SZ)
In parametric terms, the unit surface normal vector is

Rcosucosv+ s
1 2 2
VR §28In 4 cos v
R+ scosucosv 5 7 .
vR s4s8in v

This enables the parametric surface representation to be rewritten as

N(u,v)

o(u,v) oo(u,v)+ rN(u,v),

which shows that any Dupin cyclide with given valuesfbinds is a parallel offset from a base Dupin
cyclideo(u, v) with the same values dt, s but withr 0. Further, the offset distance is precisely

This generalizes an important property of the torus.

The Dupin cyclide is a manifold surface under the conditibns s < r < R. This form is known

as aring cyclide Self-intersecting forms arise when the circles in either plane of symmetry intersect.
The condition® < r < s < R give ahorned cyclideand the condition8 < s < R < r aspindle
cyclide The sense of the surface normal given above is outwards from the larger circle in either cross-
sectional view in Figure 13. For the ring cyclide this means that it is outwards-pointing over the entire

94 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

surface. For the horned cyclide the normal is inward-pointing over the smaller portion of the surface
lying between the two self-intersection points. For the spindle cyclide the ‘spindle’ corresponds to the
‘lemon’ solid arising in the case of a self-intersecting torus. For this case of the Dupin cyclide the normal
is outward-pointing over both the ‘apple’ and 'lemon’ solids enclosed by the surface.

NOTE 4 - The three forms of the Dupin cyclide are shown in Figures 14, 15 and 16.

Figure 14 — A Dupin ring cyclide

Figure 15 — A Dupin horned cyclide

(©ISO 2000 — All rights reserved 95

ISO 10303-42:2000(E)

o

L]
"’0‘! o

Figure 16 — A Dupin spindle cyclide

NOTE 5- For ISO 10303 purposes, the valuesiob 0 » > 0 s > 0 are defined to be of typeositive_-
length_measure The surface defined by the foregoing equations when one or mdéterainds is negative
corresponds to a reparametrisation of a Dupin cyclide for which these constants all non-negative.

NOTE 6 - Both families of isoparametric curves of the Dupin cyclide consist of circles.
NOTE 7 - Dupincyclides can be used to construct smooth joins between cylindrical and/or conical surfaces
whose (possibly skew) axes have arbitrary relative orientations. Additionally, smooth T-junctions between

cones and cylinders can be designed using Dupin cyclides.

NOTE 8- Dupin cyclides also have uses as blending surfaces in solid modeling, generalising the use of the
torus for this purpose.

NOTE 9- The Dupin cyclide as defined here is a quartic (degree four) algebraic surface of bounded extent.
There also exists a cubic Dupin cyclide of infinite extent, not currently defined in this part of ISO 10303.

EXPRESS specification

*

)

ENTITY dupin_cyclide_surface
SUBTYPE OF (elementary_surface);
generalised_major_radius : positive_length_measure;
generalised_minor_radius : positive_length_measure;
skewness . length_measure;

WHERE
WR1: skewness >= 0.0;

END_ENTITY;

96 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

(*

Attribute definitions

SELF\elementary_surface.position: Defines a local system of coordinates in which two of the coor-
dinate planes are axes of symmetry of the cyclide.

generalised_major_radius: The mean of the radii of the two circles forming the cyclide cross-section
in the plane of the directrix.

generalised_minor_radius: The mean of the radii of the largest and smallest generatrix circles.

skewness:Half the difference between the radii of the two cross-sectional circles in either plane of
symmetry. When thekewnessttribute is zero the surface is a torus; otherwise, its value determines the
degree of asymmetry of the surface about the third plane perpendicular to its two planes of symmetry.

Formal propositions

WR1: The skewness shall not be negative.

4.4.62 swept_surface

A swept_surfacels one that is constructed by sweeping a curve along another curve.

EXPRESS specification

*

)

ENTITY swept_surface
SUPERTYPE OF (ONEOF(surface_of linear_extrusion, surface_of revolution,

surface_curve_swept_surface, fixed_reference_swept_surface))

SUBTYPE OF (surface);
swept_curve : curve;

END_ENTITY;

(*

Attribute definitions

swept_curve: The curve to be swept in defining the surface. If the swept curve is a pcurve, it is the
image of this curve in 3D geometric space which is swept, not the parameter space curve.

(©ISO 2000 — All rights reserved 97

ISO 10303-42:2000(E)

4.4.63 surface_of linear_extrusion

This surface is a simple swept surface or a generalised cylinder obtained by sweeping a curve in a given
direction. The parametrisation is as follows, where the curve has a parametrisatijon

v

o(u,v)

extrusion_axis
Alu) + 0V

The parametrisation range foris oo < v < oo and foru is defined by the curve parametrisation.

EXPRESS specification

*

)

ENTITY surface_of linear_extrusion
SUBTYPE OF (swept_surface);
extrusion_axis . vector;

END_ENTITY;

(*

Attribute definitions

extrusion_axis: The direction of extrusion, the magnitude of this vector determines the parametrisation.

SELF\swept_surface.swept_curveThe curve to be swept.

Informal propositions

IP1: The surface shall not self-intersect.

4.4.64 surface_of revolution

A surface_of_revolutionis the surface obtained by rotating a curve one complete revolution about an
axis.

The data shall be interpreted as below.

The parametrisation is as follows, where the curve has a parametriddtipn

C = position.location
V = position.z
o(u,v) = CH+(A(v) C)cosu+ ((Alv) C) V)V(1 cosu)+V X (A(v) C)sinu

98 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

In order to produce a single-valued surface with a complete revolution, the curve shall be such that when
expressed in a cylindrical coordinate systemp, =) centred aC with axisV, no two distinct parametric
points on the curve shall have the same values:ifor).

NOTE 1- In this context a single valued surface is interpreted as one for which the mapping, from the
interior of the rectangle in parameter space corresponding to its parametric range, to geoaridained
by the surface equation, is one-to-one.

For a surface of revolution the parametric range is « < 360 degrees.

The parameter range foris defined by the referenced curve.

NOTE 2 - The geometric shape of the surface is not dependent upon the curve parametrisation.

EXPRESS specification

%)
ENTITY surface_of revolution
SUBTYPE OF (swept_surface);

axis_position . axisl_placement;
DERIVE
axis_line : line := dummy_gri || curve() || line (axis_position.location,
dummy_gri || vector(axis_position.z, 1.0));
END_ENTITY;
(*
Attribute definitions

axis_position: A point on the axis of revolution and the direction of the axis of revolution.
SELF\swept_surface.swept_curveThe curve that is revolved about the axis line.

axis_line: The line coinciding with the axis of revolution.

Informal propositions

IP1: The surface shall not self-intersect.

IP2: Theswept_curveshall not be coincident with thexis_linefor any finite part of its length.

4.4.65 surface_curve_swept_surface
A surface_curve_swept_surfacés a type ofswept_surfacewhich is the result of sweeping a curve

along adirectrix curve lying on theeference_surface The orientation of thewept_curveduring the
sweeping operation is related to the normal tordference_surface

(©ISO 2000 — All rights reserved 99

ISO 10303-42:2000(E)

Theswept_curveis required to be a curve lying in the plane 0 and this is swept along thdirectrix
in such a way that the origin of the local coordinate system used to defirsina_curveis on the
directrix and the local X axis is in the direction of the normal to therence_surface The resulting
surface has the property that the cross section of the surface by the normal planditedtne at any
point is a copy of theswept_curve

The orientation of thewept_curveas it sweeps along the directrix is precisely defined bgréesian_-
transformation_operator_3d with attributes:

local_origin as point(0, 0, 0),

axislas the normaN to thereference_surfaceat the point of thelirectrix with parametew:.

axis3as the direction of the tangent vectat the point of thalirectrix with parametet:.

The remaining attributes are defaulted to define a corresponding transformationTratrix

NOTE 1- In the special case where ttlieectrix is a planar curve theeference_surfaceis the plane of
thedirectrix and the normaN is a constant.

The parametrisation is as follows, where thigectrix has parametrisatiop(u) and theswept_curve
curve has a parametrisationv):

p(u) = Point on directriz
T(u) = Transformation matriz at parameter u
o) = p(u)+T(WA)

In order to produce a continuous surfacedirectrix curve shall be tangent continuous.
For asurface_curve_swept_surfacéhe parameter range faris defined by thelirectrix curve.
The parameter range foris defined by the referencesdvept_curve

NOTE 2 - The geometric shape of the surface is not dependent upon the curve parametrisations.

EXPRESS specification

*
)
ENTITY surface_curve_swept_surface
SUBTYPE OF (swept_surface);
directrix : curve;
reference_surface : surface;
WHERE
WR1 : (NOT (GEOMETRY_SCHEMA.SURFACE_CURVE’ IN TYPEOF(directrix))) OR
(reference_surface IN (directrix\surface_curve.basis_surface));
END_ENTITY;

(*

Attribute definitions

directrix: The curve used to define the sweeping operation. The surface is generated by sweeping the
SELF\swept_surface.swept_curvalong thedirectrix .

100 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

reference_surface: The surface containing thirectrix .

Formal propositions

WR1: If thedirectrix is asurface curvethen thereference_surfaceshall be in thébasis_surfaceset
for this curve.

Informal propositions

IP1: Theswept_curveshabe a curve lying in the plare 0

IP1: Thedirectrix shall be a curve lying on theference_surface

NOTE 3- Inthe defined parametrisation of the surface the normal teefeeence_surfaceat the current
point of thedirectrix is denotedN.

4.4.66 fixed_reference_swept_surface

A fixed_reference_swept_surfacés a type ofswept_surfacewhich is the result of sweeping a curve
along adirectrix . The arientation of the curve during the sweeping operation is controlled Bixéuke -
referencedirection.

Theswept_curveis required to be a curve lying in the plane 0 and this is swept along thdirectrix

in such a way that the origin of the local coordinate system used to defirsina_curveis on the
directrix and the local X axis is in the direction of the projectionfised_referenceonto the normal
plane to thalirectrix at this point. The resulting surface has the property that the cross section of the
surface by the normal plane to ttectrix at any pointis a copy of thewept_curve

The orientation of thewept_curveas it sweeps along the directrix is precisely defined bgrgesian_-
transformation_operator_3d with attributes:

local_origin as point(0, 0, 0),

axislasfixed_reference

axis3as the direction of the tangent vectat the point of thalirectrix with parametet:.

The remaining attributes are defaulted to define a corresponding transformationHiatyix

The parametrisation is as follows, where thigectrix has parametrisatiop(u) and theswept_curve
curve has a parametrisationv):

p(u) = Point on directriz
T(u) = Transformation matriz at parameter u
o) = p(u)+T(WA)

In order to produce a continuous surfacedirectrix curve the curve shall be tangent continuous.

For afixed_reference_swept_surfacéhe parameter range faris defined by thelirectrix curve.

(©ISO 2000 — All rights reserved 101

ISO 10303-42:2000(E)

, swept _curve T
y A(V) ' a(u,v)

directrix t i

u(w) 7/ ’b‘

fixed_reference

Figure 17 — Fixed_reference_swept_surface

The parameter range foris defined by the referencexsivept_curve
NOTE 1- The geometric shape of the surface is not dependent upon the curve parametrisations.

NOTE 2 - The attributes are illustrated in Figure 17.

EXPRESS specification

%)
ENTITY fixed_reference_swept_surface
SUBTYPE OF (swept_surface);

directrix . curve;
fixed_reference : direction;
END_ENTITY;

(*

102 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

directrix: The curve used to define the sweeping operation. The surface is generated by sweeping the
SELF\swept_surface.swept_curvalong thedirectrix .

fixed_reference: Thedirection used to define the orientation 8ELF\swept_surface.swept_curvas
it sweeps along thdirectrix .

Informal propositions

IP1: Theswept_curveshall be a curve lyingin the plane 0.

IP2: Thefixed_referenceshall not be parallel to a tangent vector to tliectrix at any point along this
curve.

4.4.67 bounded_surface

A bounded_surfaceis a surface of finite area with identifiable boundaries.

EXPRESS specification

*
)
ENTITY bounded_surface
SUPERTYPE OF (ONEOF(b_spline_surface, rectangular_trimmed_surface,
curve_bounded_surface, rectangular_composite_surface))
SUBTYPE OF (surface);
END_ENTITY;

(*

Informal propositions

IP1: A bounded_surfacehas a finite non-zero surface area.

IP2: A bounded_surfacehas boundary curves.
4.4.68 b_spline_surface
A b_spline_surfaceis a general form of rational or polynomial parametric surface which is represented

by control points, basis functions, and possibly, weights. As with the corresponding curve entity it has
some special subtypes where some of the data can be derived.

NOTE 1 - Identification of B-spline surface default values and subtypes is important for performance con-
siderations and for efficiency issues in performing computations.

(©ISO 2000 — All rights reserved 103

ISO 10303-42:2000(E)
NOTE 2- A B-spline isrational if and only if the weights are not all identical. If it is polynomial, the
weights may be defaulted to all being 1.

NOTE 3- In the case where the B-spline surface is uniform, quasi-uniform or piecewise Bézier, the knots
and knot multiplicities may be defaulted (i.e., non-existent in the data as specified by the attribute defini-
tions). When the knots are defaulted, a difference of 1.0 between separate knots is assumed, and the effective
parameter range for the resulting surface starts from 0.0. These defaults are provided by the subtypes.

NOTE 4 - The knots and knot multiplicities shall not be defaulted in the non-uniform case.

NOTE 5- The defaulting of weights and knots are done independently of one another.

The data is to be interpreted as follows:

a) The symbology used here is:

K1 = upper_index_on_u_control_points
K2 = upper_index_on_v_control_points
P;; = control_points
Wwi; = Weights

dl = u_degree

d2 = v_degree

b) The control points are ordered as
P007 P017 P027 3 PI(I(I(? 1)s PI(II(?

The weights, in the case of the rational subtype, are ordered similarly.

c) Foreach parameter, wu oru, if k is the upperindex on the control points ahi the degree for
s, the knot array is an array ¢k + d + 2) real numbergs 4, ,sk+1], such that for all indices
jin[d,k],s; < s;11. This array is obtained from the appropriateknots or v_knots list by
repeating each niiiple knotaccording to the mitiplicity.

NZ, theith normalised B-spline basis function of degreés defined on the subset
[si 4, ,si+1) Of thisarray.

d) LetL denote the number of distinct values amongst the knots in the knok lisiij be referred to

as the ‘upper index on knots’. Let; denote the multiplicity (i.e., number of repetitions) of tjth
distinct knot value. Then:

L
Somig d4k+2
i1

All knot multiplicities except the first and the last shall be in the rahge , d; the first and last

may have a maximum value &f+ 1. In evaluating the basis functions, a kmodf, e.g., multiplicity
3 isinterpreted as a sequeneeu, «, in the knot array.

104 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

e) Thesurface_formis used to identify specific quadric surface types (which shall have degree two),
ruled surfaces and surfaces of revolution. As withlthepline_curve thesurface_formis infor-
mational only and the spline data takes precedence.

f) The surface is to be interpreted as follows: In the polynomial case the surface is given by the equa-
tion:

K1 K2

o(u,v) Z Z PijNZdl (u)N]dz(v)

i 05 0

In the rational case the surface equation is:

o0 30 wig Py N (u) N (v)

K3

= b % w7 ()N

7 J 75"

o(u,v)

NOTE 6 - Definitions of the B-spline basis functions;’ (v) and N/*(v), can be found in [D-1, D-2,
D-3]. It should be noted that there is a difference in terminology between these references.

EXPRESS specification

*
)
ENTITY b_spline_surface
SUPERTYPE OF (ONEOF(b_spline_surface_with_knots, uniform_surface,
quasi_uniform_surface, bezier_surface)
ANDOR rational_b_spline_surface)
SUBTYPE OF (bounded_surface);
u_degree . INTEGER,;
v_degree : INTEGER,;
control_points_list : LIST [2:?] OF
LIST [2:?] OF cartesian_point;

surface_form : b_spline_surface_form;
u_closed : LOGICAL,;
v_closed . LOGICAL;
self_intersect . LOGICAL;
DERIVE
u_upper : INTEGER := SIZEOF(control_points_list) - 1;
V_upper : INTEGER := SIZEOF(control_points_list[1]) - 1;
control_points : ARRAY [O:u_upper] OF ARRAY [0:v_upper] OF

cartesian_point
:= make_array_of array(control_points_list,
0,u_upper,0,v_upper);
WHERE
WR1: (GEOMETRY_SCHEMA.UNIFORM_SURFACE’ IN TYPEOF(SELF)) OR

(GEOMETRY_SCHEMA.QUASI_UNIFORM_SURFACE’ IN TYPEOF(SELF)) OR

(GEOMETRY_SCHEMA.BEZIER_SURFACE’ IN TYPEOF(SELF)) OR

(GEOMETRY_SCHEMA.B_SPLINE_SURFACE_WITH_KNOTS’ IN TYPEOF(SELF));

END_ENTITY;

(©ISO 2000 — All rights reserved 105

ISO 10303-42:2000(E)

(*

Attribute definitions

u_degree: Algebraic degree of basis functionsin

v_degree: Algebraic degree of basis functionsin

control_points_list: This s a list of lists of control points.

surface_form: Indicator of special surface types. (See 4.3.4.)

u_closed: Indication of whether the surface is closed in theirection; this is for information only.
v_closed: Indication of whether the surface is closed in thairection; this is for information only.
self_intersect: Flag to indicate whether, or not, surface is self-intersecting; this is for information only.
u_upper: Upper index on control points ia direction.

v_upper: Upper index on control points indirection.

control_points: Array (two-dimensional) of control points defining surface geometry. This array is
constructed from the control points list.

Formal propositions

WRZ1: Any instantiation of this entity shall include one of the subtypes
b_spline_surface_with_knotsuniform_surface, quasi_uniform_surface or
bezier_surface

4.4.69 b_spline_surface_with_knots

This is a B-spline surface in which the knot values are explicitly given. This subtype shall be used to
represent non-uniform B-spline surfaces, and may also be used for other knot types.

All knot multiplicities except the first and the last shall be in the rahge , d; the first and last may
have a maximum value a@f+ 1.

In evaluating the basis functions, a knoof, e.g., multiplicity3 is interpreted as a sequenegu, u, in
the knot array.

EXPRESS specification

*)
ENTITY b_spline_surface_with_knots

106 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

SUBTYPE OF (b_spline_surface);
u_multiplicities : LIST [2:?] OF INTEGER,;
v_multiplicities : LIST [2:?] OF INTEGER,;

u_knots . LIST [2:?] OF parameter_value;
v_knots . LIST [2:?] OF parameter_value;
knot_spec . knot_type;
DERIVE
knot_u_upper : INTEGER := SIZEOF(u_knots);
knot_v_upper : INTEGER := SIZEOF(v_knots);
WHERE

WRZ1: constraints_param_b_spline(SELF\b_spline_surface.u_degree,
knot_u_upper, SELF\b_spline_surface.u_upper,
u_multiplicities, u_knots);
WR2: constraints_param_b_spline(SELF\b_spline_surface.v_degree,
knot_v_upper, SELF\b_spline_surface.v_upper,
v_multiplicities, v_knots);
WR3: SIZEOF(u_multiplicities) = knot_u_upper;
WR4: SIZEOF(v_multiplicities) = knot_v_upper;
END_ENTITY;
(*

Attribute definitions

u_multiplicities: The multiplicities of the knots in the parameter direction.
v_multiplicities: The multiplicities of the knots in the parameter direction.
u_knots: The list of the distinct knots in the parameter direction.

v_knots: The list of the distinct knots in the parameter direction.

knot_spec: The description of the knot type.

knot_u_upper: The number of distinct knots in theparameter direction.
knot_v_upper: The number of distinct knots in theparameter direction.
SELF\b_spline_surface.u_degreeAlgebraic degree of basis functions:in
SELF\b_spline_surface.v_degreeAlgebraic degree of basis functionsin
SELF\b_spline_surface.control_points_list: This is a list of lists of control points.
SELF\b_spline_surface.surface_form:Indicator of special surface types. (See 4.3.4.)

SELF\b_spline_surface.u_closedindication of whether the surface is closed in thdirection; this
is for information only.

SELF\b_spline_surface.v_closedindication of whether the surface is closed in thdirection; this is
for information only.

SELF\b_spline_surface.self_intersectFlag to indicate whether, or not, surface is self-intersecting;
this is for information only.

(©ISO 2000 — All rights reserved 107

ISO 10303-42:2000(E)

SELF\b_spline_surface.u_upper: Upper index on control points im direction.
SELF\b_spline_surface.v_upper: Upper index on control points indirection.

SELF\b_spline_surface.control_points: Array (two-dimensional) of control points defining surface
geometry. This array is constructed from the control points list.

Formal propositions

WR1: constraints_param_b_splinereturns TRUE when the parameter constraints are verified for the
u direction.

WR2: constraints_param_b_splinereturns TRUE when the parameter constraints are verified for the
v direction.

WR3: The number oti_multiplicities shall be the same as the numbeuoknots.

WR4: The number of/_multiplicities shall be the same as the numbevoknots.

4.4.70 uniform_surface

This is a special type di_spline_surfacein which the knots are evenly spaced. Suitable default values
for the knots and knot multiplicities can be derived in this case.

A B-spline isuniformif and only if all knots are of multiplicity 1 and they differ by a positive constant
from the preceding knot. In this subtype the knot spacing is 1.0, starting frdimree.

EXPRESS specification

%)
ENTITY uniform_surface

SUBTYPE OF (b_spline_surface);
END_ENTITY;

(*
NOTE - If explicit knot values for the surface are required, they can be derived as follows:
— ku_up SELF\b_spline_surface u_upper + SELF\b_spline_sur face u_degree + 2
— kv_up SELF\b_spline_surface v_upper + SELF\b_spline_sur face v_degree + 2
ku_up is the value required for the upper index on the knot and knot multiplicity lists im tfieection. This
is computed from the degree and the number of control points in this direction.
kv_up is the value required for the upper index on the knot and knot multiplicity lists im thigection. This
is computed from the degree and the number of control points in this direction. The knot multiplicities and

knots in theu andv parameter directions are then given by the function calls:
default_b_spline_knot_mul{SELF\b_spline_surfaca. degree, ku_up, uniform_knots)

108 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

default_b_spline_knot¢SELR\b_spline_surfaca. degree, ku_up, uniform_knots)
default_b_spline_knot_mul{SELF\b_spline_surface. degree, kv_up, uniform_knots)
default_b_spline_knot¢SELF\b_spline_surface. degree, kv_up, uniform_knots)

44.71 quasi_uniform_surface

This is a special type di_spline_surfacein which the knots are evenly spaced, and except for the first
and last, have multiplicity 1. Suitable default values for the knots and knot multiplicities are derived in
this case.

A B-spline isquasi-uniformif and only if the knots are of multiplicitfdegree 4+ 1) at the ends, of

multiplicity 1 elsewhere, and they differ by a positive constant from tlee@ding knot. In this subtype
the knot spacing is 1.0, starting from 0.0.

EXPRESS specification

)

ENTITY quasi_uniform_surface
SUBTYPE OF (b_spline_surface);

END_ENTITY;

(*

NOTE - If explicit knot values for the surface are required, they can be derived as follows:
— ku_up SELF\b_spline_surface u_upper SELF\b_spline_surface u_degree + 2
— kv_up SELF\b_spline_surface v_upper SELF\b_spline_surface v_degree + 2

ku_up is the value required for the upper index on the knot and knot multiplicity lists im tfieection. This

is computed from the degree and the number of control points in this direction.

kv_up is the value required for the upper index on the knot and knot multiplicity lists im thisection. This

is computed from the degree and the number of control points in this direction. The knot multiplicities and
knots in theu andv parameter directions are then given by the function calls:

default_b_spline_knot_mul{SELF\b_spline_surfaca. degree, ku_up, quasi_uniform_knots)
default_b_spline_knot¢SELF\b_spline_surface. degree, ku_up, quasi_uniform_knots)
default_b_spline_knot_mul{SELF\b_spline_surface. degree, kv_up, quasi_uniform_knots)
default_b_spline_knot¢SELR\b_spline_surface. degree, kv_up, quasi_uniform_knots)

(©ISO 2000 — All rights reserved 109

ISO 10303-42:2000(E)

4.4.72 bezier_ surface

This is a special type of surface which can be represented as a typepline_surfacein which the
knots are evenly spaced and have hightiplicities. Suitable default values for the knots and knot
multiplicities are derived in this case. In this subtype the knot spacing is 1.0, starting from 0.0.

EXPRESS specification

%)
ENTITY bezier_surface

SUBTYPE OF (b_spline_surface);
END_ENTITY;

(*

NOTE - If explicit knot values for the surface are required, they can be derived as follows:

. SELF\b spline surface u_upper
ku—up SELF\b_spline_surface u_degree +1
SELF\b spline surface v_upper
- kv—up SELF\b_spline_surface v_degree +

ku_up is the value required for the upper index on the knot and knot multiplicity lists im tfieection. This

is computed from the degree and the number of control points in this direction.

kv_up is the value required for the upper index on the knot and knot multiplicity lists im thigection. This

is computed from the degree and the number of control points in this direction. The knot multiplicities and
knots in theu andv parameter directions are then given by the function calls:
default_b_spline_knot_mul{SELF\b_spline_surfaca. degree, ku_up, bezier_knots)
default_b_spline_knot¢SELF\b_spline_surface. degree, ku_up, bezier_knots)
default_b_spline_knot_mul{SELF\b_spline_surface. degree, kv_up, bezier_knots)
default_b_spline_knot¢SELR\b_spline_surface. degree, kv_up, bezier_knots).

4.4.73 rational_b_spline_surface

A rational_b_spline_surfaceis a piecewise parametric rational surface described in terms of control
points, associated weight values and basis functions. It is instantiated with any of the other subtypes
of b_spline_surface which provide explicit or implicit knot values from which the basis functions are
defined.

The surface is to be interpreted as follows:

SR R wi Py NI (u) N2 (v)

7
21(10 ?720 wl]NZdl (u) N]dz(v)

o(u,v)

110 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

NOTE - See 4.4.68 for details of the symbology used in the above equation.

EXPRESS specification

)
ENTITY rational_b_spline_surface
SUBTYPE OF (b_spline_surface);
weights_data : LIST [2:?] OF
LIST [2:?] OF REAL;

DERIVE
weights : ARRAY [0:u_upper] OF
ARRAY [0:v_upper] OF REAL
:= make_array_of array(weights_data,0,u_upper,0,v_upper);
WHERE

WR1: (SIZEOF(weights_data) =
SIZEOF(SELF\b_spline_surface.control_points_list))
AND (SIZEOF(weights_data[1]) =
SIZEOF(SELF\b_spline_surface.control_points_list[1]));
WR2: surface_weights_positive(SELF);
END_ENTITY;

(*

Attribute definitions

weights_data: The weights associated with the control points in the rational case.

weights: Array (two-dimensional) of weight values constructed fromifeéghts_data

Formal propositions

WR1: The array dimensions for the weights shall be consistent with the control points data.

WR2: The weight value associated with each control point shall be greater than zero.
4.4.74 rectangular_trimmed_surface
The trimmed surface is a simpb®unded_surfacein which the boundaries are the constant parametric

linesu; ul,us U2,vy Vvlandv, V2. Allthese values shall be within the parametric range of
the referenced surface. Cyclic properties of the parameter range are assumed.

NOTE 1- For example, 370 degrees is equivalent to 10 degrees, for those surfaces whose parametric form
is defined using circular functions (sine and cosine).

(©ISO 2000 — All rights reserved 111

ISO 10303-42:2000(E)

The rectangular trimmed surface inherits its parametrisation directly from the basis surface and has pa-
rameter ranges fromOte, wu;|and Otolv, wvy|. The derivation of the new parameters from the old
uses the algorithm described in 4.4.39.

NOTE 2 - If the surface is closed in a given parametric direction, the valueg of v, may require to be
increased by the cyclic range.

EXPRESS specification

)

ENTITY rectangular_trimmed_surface
SUBTYPE OF (bounded_surface);
basis_surface : surface;

ul . parameter_value;

u2 . parameter_value;

vl . parameter_value;

v2 . parameter_value;

usense . BOOLEAN,;

vsense : BOOLEAN,;
WHERE

WR1: ul <> u2;

WR2: vl <> v2;

WR3: ((GEOMETRY_SCHEMA.ELEMENTARY_SURFACE’ IN TYPEOF(basis_surface))
AND (NOT (GEOMETRY_SCHEMA.PLANE’ IN TYPEOF(basis_surface)))) OR
(GEOMETRY_SCHEMA.SURFACE_OF_REVOLUTION’ IN TYPEOF(basis_surface))

OR (usense = (u2 > ul));
WR4: ((GEOMETRY_SCHEMA.SPHERICAL_SURFACE’' IN TYPEOF(basis_surface))
OR
(GEOMETRY_SCHEMA.TOROIDAL_SURFACE’ IN TYPEOF(basis_surface)))
OR (vsense = (v2 > vl));
END_ENTITY;

(*

Attribute definitions

basis_surface: Surface being trimmed.
ul: Firstu parametric value.

u2: Secondu parametric value.

v1: Firstv parametric value.

v2: Secondy parametric value.

usense: Flag to indicate whether the direction of the first parameter of the trimmed surface agrees with
or opposes the sensewoin the basis surface.

112 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

vsense: Flag to indicate whether the direction of the second parameter of the trimmed surface agrees
with or opposes the sensewin the basis surface.

Formal propositions

WR1: ul andu?2 shall have different values.
WR2: v1 andv2 shall have different values.

WR3: With the exception of those surfaces closed inithparameter directioysenseshall be compat-
ible with the ordered parameter values for

WRA4: With the exception of those surfaces closed intlparameter directiorvsenseshall be compat-
ible with the ordered parameter values for

Informal propositions

IP1: The domain of the trimmed surface shall be within the domain of the surface being trimmed.

4.4.75 curve_bounded_surface

The curve_bounded_surfaces a parametric surface with curved boundaries defined by one or more
boundary_curves ordegenerate_pcurve. One of theboundary_curves may be the outer boundary;

any number of inner boundaries is permissible. The outer boundary may be defined implicitly as the
natural boundary of the surface; this is indicated byithglicit_outer flag being true. In this case at

least one inner boundary shall be defined. For certain types of closed, or partially closed, surface (e.g.
cylinder) it may not be possible to identify any given boundary as outer. The region otithe -
bounded_surfacein thebasis_surfacds defined to be the portion of the basis surface in the direction

of nx t from any point on the boundary, wheamnés the surface normal aridche boundary curve tangent
vector at this point. The region so defined shall be arcwise connected.

EXPRESS specification

%)
ENTITY curve_bounded_surface
SUBTYPE OF (bounded_surface);

basis_surface . surface;
boundaries : SET [1:?] OF boundary_curve;
implicit_outer : BOOLEAN,;

WHERE

WR1: (NOT implicit_outer) OR
(SIZEOF (QUERY (temp <* boundaries |
'GEOMETRY_SCHEMA.OUTER_BOUNDARY_CURVE’ IN TYPEOF(temp))) = 0);
WR2: (NOT(implicit_outer)) OR
(GEOMETRY_SCHEMA.BOUNDED_SURFACE' IN TYPEOF(basis_surface));

(©ISO 2000 — All rights reserved 113

ISO 10303-42:2000(E)

boundary_curve

boundary_curve

basis_surface

Figure 18 — Curve bounded surface

WR3: SIZEOF(QUERY(temp <* boundaries |
'GEOMETRY_SCHEMA.OUTER_BOUNDARY_CURVE’ IN

TYPEOF(temp))) <= 1,
WR4: SIZEOF(QUERY (temp <* boundaries |

(temp\composite_curve_on_surface.basis_surface [1] <>

SELF.basis_surface))) = 0;
END_ENTITY;

(*

Attribute definitions

basis_surface: The surface to be bounded.

boundaries: The bounding curves of the surface, other than the implicit outer boundary, if present. At
most, one of these may be identified as an outer boundary by being ajuygre boundary_curve

implicit_outer: A Boolean flag which, if true, indicates the natural boundary of the surface is used as
an outer boundary.

NOTE - See Figure 18 for interpretation of these attributes.

114 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Formal propositions

WR1: No explicit outer boundary shall be present wihraplicit_outer is TRUE.
WR2: The outer boundary shall only be implicitly defined if thasis_surfacds bounded.
WR3: At most, one outer boundary curve shall be included in the set of boundaries.

WRA4: Eachboundary_curve shall lie on thebasis_surface This is verified from the
basis_surfaceattribute of thecomposite_curve_on_surfaceupertype for each element of theund-
arieslist.

Informal propositions

IP1: Each curve in the set dfoundariesshall be closed.
IP2: No two curves in the set dfoundariesshall intersect.

IP3: At most one of the boundary curves may enclose any other boundary curveoutem bound-
ary_curve is designated, only that curve may enclose any other boundary curve.

4.4.76 boundary_curve

A boundary_curveis a type of bounded curve suitable for the definition of a surface boundary.

EXPRESS specification

*
)
ENTITY boundary_curve

SUBTYPE OF (composite_curve_on_surface);
WHERE

WR1: SELF\composite_curve.closed_curve;
END_ENTITY;

(*

Formal propositions

WR1: The derivectlosed_curveattribute of thecomposite_curvesupertype shall be TRUE.

4.4.77 outer_boundary_curve

This is a special sub-type of boundary curve which has the additional semantics of defining an outer
boundary of a surface. No more than one such curve shall be included in thels®inofaries of a
curve_bounded_surface

(©ISO 2000 — All rights reserved 115

ISO 10303-42:2000(E)

EXPRESS specification

)

ENTITY outer_boundary curve
SUBTYPE OF (boundary_curve);

END_ENTITY;

(*

4.4.78 rectangular_composite_surface

This is a surface composed of a rectangular array_af by n_v segments or patches. Each segment
shall be finite and topologically rectangular (i.e., it corresponds to a rectangle in parameter space). The
segment shall be eithera spline_surfaceor arectangular_trimmed_surface There shall be at least
positional continuity between adjacent segments in both directions; the composite surface may be open
or closed in the: direction and open or closed in thalirection.

For a particular segment;; (= segmentsli][j]):

— The preceding segment in thedirection isS; 1); and the preceding segment in thelirection is
Si(; 1); similarly for following segments.

— If segments]i][j].u_senseés TRUE, the boundary of;; where it adjoins5(;); is that where the:
parameter (of the underlying bounded surface) is high.
If segments]i][j].u_sensés FALSE, itis at the lows boundary; similarly for the_sensendicator.

— Thew parametrisation of;; in the composite surface is froin 1 to 7, mapped linearly from the
parametrisation of the underlying bounded surfacéd/ I6 theu parameter for theectangular_-
composite_surfaceandu;;o < u;; < w51, is theuw parameter fosegmentsi][j], these parameters
are related by the equations:

Ui U0

v 1+ wij ugo+ (U (0 1)) (uijn wijo),

Usj1 Uz’jo7
if segments]i][j].u_sense= TRUE;

U i Sy uge (U i) uigo),
Uij1 Ugj0

if segmentsJi][j].u_sense FALSE.

Thewv parametrisation is obtained in a similar way.

Thus the composite surface has parametric ranga0up0 ton_v.
— The degree of continuity of the joint betwegpy andS;,); is given by

segments]i][j].u_transition.

For the last patch in a row,,,; this may take the valugiscontinuous if the composite surface is
open in the: direction; otherwise it is closed here, and the transition code relates to the continuity to

116 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

S1;; similarly for v_transition. discontinuousshall not occur elsewhere in tsegments surface_-
patch transition codes.

EXPRESS specification

*
)
ENTITY rectangular_composite_surface
SUBTYPE OF (bounded_surface);
segments . LIST [1:?] OF LIST [1:?] OF surface_patch;
DERIVE
n_u : INTEGER
n_v : INTEGER
WHERE
WR1: SIZEOF(QUERY (s <* segments | n_v <> SIZEOF (s))) = 0;
WR2: constraints_rectangular_composite_surface(SELF);
END_ENTITY;

(*

SIZEOF(segments);
SIZEOF(segments[1]);

Attribute definitions

n_u: The number of surface patches in thparameter direction.
n_v: The number of surface patches in thparameter direction.

segments: Rectangular array (represented by a list of list) of component surface patches. Each such
patch contains information on the senses and transitions.

segments][i][j].u_transition refers to the state of continuity betwesggments]i][j]andsegments[i+1][j}

The last columngegments[n_u][j].u_transition) may contain the valudiscontinuous meaning that

(that row of) the surface is not closed in thelirection; the rest of the list shall not contain this value.

The last row §egments[i][n_v].v_transition) may contain the valudiscontinuous meaning that (that
column of) the surface is not closed in thhéirection; the rest of the list shall not contain this value.

Formal propositions

WR1: Each sub-listin theegmentdist shall contaim_v surface_patcles.
WR2: Other constraints on the segments:

— that the component surfaces are all either rectangular trimmed surfaces or B-spline surfaces;
— that thetransition_codes in thesegmentdist do not contain the value

discontinuousexcept for the last row or column; when this occurs, it indicates that the surface is
not closed in the appropriate direction.

(©ISO 2000 — All rights reserved 117

ISO 10303-42:2000(E)

Informal propositions

IP1: The senses of the component surfaces are as specifiedingaeseandv_sensattributes of each
element okegments

4.4.79 surface_patch

A surface patch is a bounded surface with additional transition and sense information which is used to
define arectangular_composite_surface

EXPRESS specification

)

ENTITY surface_patch

SUBTYPE OF (founded_item);
parent_surface : bounded_surface;

u_transition . transition_code;

v_transition : transition_code;

u_sense : BOOLEAN,;

v_sense . BOOLEAN,;
INVERSE

using_surfaces : BAG[1:?] OF rectangular_composite_surface FOR segments;
WHERE
WR1: (NOT (GEOMETRY_SCHEMA.CURVE_BOUNDED_SURFACE’
IN TYPEOF(parent_surface)));
END_ENTITY;

(*

Attribute definitions

parent_surface: The surface which defines the geometry and boundaries of the surface patch.

NOTE - Sincesurface_patchis not a subtype ajeometric_representation_itenthe instance dbounded_ -
surfaceused aparent_surfaceis not automatically associated with theometric_representation_context
of the representation using arectangular_composite_surfacecontaining thisurface_patch It is there-
fore necessary to ensure that ttmunded_surfaceinstance is explicitly included in eepresentation with
the appropriatgeometric_representation_context

u_transition: The minimum state of geometric continuity along the seaobdundary of the patch as it
joins the firstu. boundary of its neighbour. In the case of the last patch, this defines the state of continuity
between the first boundary and last boundary of theectangular_composite_surface

v_transition: The minimum state of geometric continuity along the seaohdundary of the patch as it
joins the firstv boundary of its neighbour. In the case of the last patch, this defines the state of continuity
between the first boundary and last boundary of theectangular_composite_surface

118 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

u_sense:This defines the relationship between the sense (increasing parameter value) of the patch and
the sense of thparent_surface If u_sensds TRUE, the first: boundary of the patch is the one where
the parameter takes its lowest value; it is the highest value boundary if sense is FALSE.

v_sense:This defines the relationship between the sense (increasing parameter value) of the patch and
the sense of thparent_surface If v_sensds TRUE, the firsty boundary of the patch is the one where
the parameter takes its lowest value; it is the highest value boundary if sense is FALSE.

using_surfaces: The bag ofrectangular_composite_surface which use thisurface_patchin their
definition. This bag shall not be empty.

Formal propositions

WR1: A curve bounded surface shall not be used to define a surface patch.

4.4.80 offset_surface
This is a procedural definition of a simple offset surface at a normal distance from the originataogsurf

distancemay be positive, negative or zero to indicate the preferred side of the surface. The positive side
and the resultant offset surface are defined as follows:

a) Define unit tangent vectors of the base surface inthvedo directions; denote these by, andeo .

b) Take the cross produdy o, Xx0o,, Of these (which shall be linearly independent, or there is no
offset surface)N shall be extended by continuity at singular points, if possible.

c) NormaliseN to get a unit normal (to the surface) vector.
d) Move the offset distance (which may be zero) along that vector to find the point on the offset surface.
NOTE 1- The definition allows theffset_surfaceto be self-intersecting.

The offset surface takes its parametrisation directly from that of the basis surface, corresponding points
having identical parameter values. Ttféset_surfaceis parametrised as

o(u,v) S(u,v)+ dN
WhereN is the unit normal vector to the basis surf&e,) at parameter values (v), andd is distance

NOTE 2 - Care should be taken when using this entity to ensure that the offset distance needséke
radius of curvature in any direction at any point of the basis surface. In particular, the surfadte sot
contain any ridge or singular point.

EXPRESS specification

)

(©ISO 2000 — All rights reserved 119

ISO 10303-42:2000(E)

ENTITY offset_surface
SUBTYPE OF (surface);
basis_surface : surface;

distance . length_measure;
self_intersect : LOGICAL;
END_ENTITY;
(*
Attribute definitions

basis_surface: The surface that is to be offset.

distance: The offset distance, which may be positive, negative or zero. A positive offset distance is
measured in the direction of the surface normal.

self_intersect: Flag to indicate whether or not the surface is self-intersecting; this is for information
only.

4.4.81 oriented_surface

An oriented_surfaceis a type of surface for which the direction of the surface normal may be reversed.
The unit normaN, at any point on theriented_surfaceis defined by the egations:

Jo Jo

N(u, v) <8_u X %% if orwentation TRUE
N(u, v) <Z—Z X Z—Z% if orwentation FALSE

NOTE - Anoriented_surfacemay be instantiated with other subtypes of surface. For example a complex
instance obriented_surface with orientation = .FALSE., andspherical_surfacedefines a spherical surface
with an inward pointing normal.

EXPRESS specification

*

)

ENTITY oriented_surface
SUBTYPE OF (surface);
orientation : BOOLEAN;

END_ENTITY;

(*

Attribute definitions

orientation: This flag indicates whether, or not, the direction of the surface normal is reversed.

120 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.4.82 surface_replica

This defines a replica of an existing surface in a different location. It is defined by referencing the parent
surface and a transformation which gives the new position and possible scaling. The original surface is
not affected. The geometric characteristics of the surface produced will be identical to that of the parent
surface, but, where the transformation includes scaling, the size may differ.

EXPRESS specification

*
)
ENTITY surface_replica

SUBTYPE OF (surface);

parent_surface : surface;

transformation : cartesian_transformation_operator_3d;
WHERE

WRZ1: acyclic_surface_replica(SELF, parent_surface);
END_ENTITY;

(*

Attribute definitions

parent_surface: The surface that is being copied.

transformation: The cartesian_transformation_operator_3dwhich defines the location, orientation
and scaling of the surface replica relative to that of the parent surface.

Formal propositions

WR1: A surface_replicashall not participate in its own definition.

4.4.83 volume

A volumeis a three dimensional solid of finite volume with a tri-parametric representation.
Each volume has a parametric representation

V(u,v,w),
where u, v, w are independent dimensionless parameters. Fofweachw) within the parameter range:
r V(u,v,w),

gives the coordinates of a point within the volume.

NOTE - Inthis version of the proposal the parameter ranges for the standard primitives have been standard-
ised, mainly to [0:1], to ensure that they are dimensionless quantities.

(©ISO 2000 — All rights reserved 121

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY volume
SUPERTYPE OF (ONEOF(block volume, wedge volume, spherical_volume,
cylindrical_volume, eccentric_conical_volume,
toroidal_volume, pyramid_volume, b_spline_volume,
ellipsoid_volume, tetrahedron_volume, hexahedron_volume))
SUBTYPE OF (geometric_representation_item);

WHERE
WR1 : SELF\geometric_representation_item.dim = 3;
END_ENTITY;

(*

Formal propositions

WR1: The coordinate space dimensionality shall be 3.

4.4.84 block volume

A block_volumeis a parametric volume in the form of a solid rectangular parallelepiped, defined with a
location and placement coordinate system. Bloek_volumeis specified by the positive lengtisy,

andz along the axes of the placement coordinate system, and has one vertex at the origin of the placement
coordinate system.

The data is to be interpreted as follows:

C = position.location (corner)
= position.p[1]

= position.p[2]

= position.p[3]

X (length)

= vy (depth)

=z (height)

TR~ N M
1l

and the volume is parametrised as
Vi(u,v,w) C+H ulx+ vdy + whz

where the parametrisation rangdisl © < 1,0 < v < 1,and0 < w < 1.

EXPRESS specification

%)
ENTITY block_volume

122 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

SUBTYPE OF (volume);
position : axis2_placement_3d;

X . positive_length_measure;
y . positive_length_measure;
z . positive_length_measure;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the axis system for the primitive. The block has one vertex at
position.locationand its edges aligned with the placement axes in the positive sense.

x: The size of the block along the placement X axis, {pos.p[1]).
y: The size of the block along the placement Y axis, {fas.p[2]).
z: The size of the block along the placement Z axis, {fas.p[3]).

4.4.85 wedge_volume

A wedge_volumes a parametric volume which can be envisioned as the result of intersecting a block
with a plane perpendicular to one of its faces. It is defined with a location and local coordinate system. A
triangular/trapezoidal face lies in the plane defined by the placement X and Y axes. This face is defined
by positive lengthg andy along the placement X and Y axes, by the ledgth(if non-zero) parallel to

the X axis at a distancgefrom the placement origin, and by the line connecting the ends of #imelltx
segments. The remainder of the wedge is specified by the positive [eaffihg the placement Z axis
which defines a distance through which the trapezoid or triangle is extruded. If LTXhe wedge has

five faces; otherwise, it has six faces.

NOTE - See Figure 19 for interpretation of attributes.

The data is to be interpreted as follows:

C = position.location (corner)
= position.p[1]

= position.p[2]

= position.p[3]

X (length)

= vy (depth)

=z (height)

lin = ItX

>R N K
1l

and the volume is parametrised as
V(u,v,w) CHu((l o)+ vlpim)x+vdy + whz

where the parametrisation rangdisl © < 1,0 < v < 1,and0 < w < 1.

(©ISO 2000 — All rights reserved 123

ISO 10303-42:2000(E)

Itx

p[

p[3]

location

p[1]

position attributes

Figure 19 — Wedge_volume and its attributes

EXPRESS specification

%)

ENTITY wedge_volume
SUBTYPE OF (volume);
position : axis2_placement_3d;

X . positive_length_measure;
y . positive_length_measure;
z . positive_length_measure;
Itx . length_measure;

WHERE

WR1: ((0.0 <= Itx) AND (Itx < Xx));
END_ENTITY;
(*

124

(©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

position: The location and orientation of the placement axis system for the primitive. The wedge has
one vertex aposition.locationand its edges aligned with the placement axes in the positive sense.

x: The size of the wedge along the placement X axis.
y: The size of the wedge along the placement Y axis.
z: The size of the wedge along the placement Z axis.

ltx: The length in the positive X direction of the smaller surface of the wedge.

Formal propositions

WR1: Itx shall be non-negative and less than

4.4.86 pyramid_volume

A pyramid_volumeis a parametric volume in the form of a solid pyramid with a rectangular base. The
apex of the pyramid is directly above the centre point of the base. The eedtorighy@bbid_volume
is specified by its position, which provides a placement coordinate system, its length, depth and height.

The data is to be interpreted as follows:

C = position.location
= position.p[1]

= position.p[2]

= position.p[3]
xlength

= ylength

= height

TR~ N M
1l

and the volume is parametrised as

l d
Viu,v,w) C+H w(§x + 3y + hz)+ (1 w)(ulx+ vdy)

where the parametric rangelis< u, v, w < 1.

EXPRESS specification

*)
ENTITY pyramid_volume
SUBTYPE OF (volume);

position . axis2_placement_3d;
xlength . positive_length_measure;
ylength . positive_length_measure;

(©ISO 2000 — All rights reserved 125

ISO 10303-42:2000(E)

height . positive_length_measure;
END_ENTITY;
(*

Attribute definitions

position: The location and orientation of the pyramijabsition defines a placement coordinate system
for the pyramid. The pyramid has one corner of its bagmoattion.locationand the edges of the base
are aligned with the first two placement axes in the positive sense.

xlength: The length of the base measured along the placement X axisi¢pas{1]).
ylength: The length of the base measured along the placement Y axisi¢pos{2]).

height: The height of the apex above the plane of the base, measured in the direction of the placement
Z axis (position.p[3]).

4.4.87 tetrahedron_volume

A tetrahedron_volumeis a type ofvolume with 4 vertices and 4 triangular faces. It is defined by the
four cartesian_point which locate the vertices. These points shall not be coplanar.

The data is to be interpreted as follows:

= point_1.coordinates
point_2.coordinates
= point_3.coordinates
= point_4.coordinates

s TW
1l

The volume is parametrised as
V(u,v,w) a+ub a)t+v(c a)+w(d a)

where the parametrisation rangdist « < 1,0 < v < 1,and0 < w < 1,withu +v+w < 1

EXPRESS specification

*

)

ENTITY tetrahedron_volume

SUBTYPE OF (volume);

point_1 : cartesian_point ;
point_2 : cartesian_point ;
point_3 : cartesian_point ;
point_4 : cartesian_point ;

WHERE

126 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

WR1: point_1.dim = 3 ;

WR2: above_plane(point_1, point_2, point_3, point_4) <> 0.0 ;
END_ENTITY;
(*

Attribute definitions

point_1: Thecartesian_pointthat locates the first vertex of thetrahedron.
point_2: Thecartesian_pointthat locates the second vertex of te&ahedron.
point_3: Thecartesian_pointthat locates the third vertex of thetrahedron.

point_4: Thecartesian_pointthat locates at the fourth vertex of ttegrahedron.

Formal propositions

WR1: The coordinate space dimensionpaint_1 shall be 3.

NOTE - The rulecompatible_dimensiorensures that all theartesian_pointattributes of this entity have
the same dimension.

WR2: point_1, point_2, point_3andpoint_4 shall not be coplanar. This is tested by verifying that the
cross_productof the three directions fromoint_1 to each of the other points is non-zero.

4.4.88 hexahedron_volume

A hexahedron_volumeis a type ofvolume with 8 vertices and 6 four-sided faces. It is defined by the 8
points which locate the vertices.

The volume is parametrised as
Viu,v,w) (1 u)(1 v)(1 w)Pi+(1 w)(v)(l w)Pzuv(l w)Ps+u(l v)(1 w)Pat+

(1 w) (1 v)wPs+ (1 u)(v)wPe+uvwPr+u(l v)wPs+

where the parametric range(is< u, v, w < 1, andP; denotes the position vector pdintsi] .

EXPRESS specification

)
ENTITY hexahedron_volume
SUBTYPE OF (volume);
points : LIST[8:8] OF cartesian_point;
WHERE
WR1: above_plane(points[1], points[2], points[3], points[4]) = 0.0;

(©ISO 2000 — All rights reserved 127

ISO 10303-42:2000(E)

WR2: above_plane(points[5], points[8], points[7], points[6])
WR3: above_plane(points[1], points[4], points[8], points[5])
WRA4: above_plane(points[4], points[3], points[7], points[8])
WRS5: above_plane(points[3], points[2], points[6], points[7])
WR6: above_plane(points[1], points[5], points[6], points[2])
WRY7: same_side([points[1], points[2], points[3]],

[points[5], points[6], points[7], points[8]]);
WRS8: same_side([points[1], points[4], points[8]],

[points[3], points[7], points[6], points[2]]);
WR9: same_side([points[1], points[2], points[5]],

[points[3], points[7], points[8], points[4]]);
WR10: same_side([points[5], points[6], points[7]],

[points[1], points[2], points[3], points[4]]);
WR11: same_side([points[3], points[7], points[6]],

[points[1], points[4], points[8], points[5]]);
WR12: same_side([points[3], points[7], points[8]],

[points[1], points[5], points[6], points[2]]);
WR13: points[1].dim = 3;

END_ENTITY;
(*

[eleoleoNoNa]
OOOOO

Attribute definitions

points: Thecartesian_point that locate the vertices of tltenvex_hexahedron These points are or-
dered such thaioints[1], points[2], points[3], points[4]define, in anti-clockwise order, one planar face
of the solid and, in corresponding ordenints[5], points[6], points[7], points[8] define the opposite
face.

NOTE - See Figure 22 for further information about the positions of the vertices.

Formal propositions

WR1: The first 4points shall be coplanar.

WR2: The final 4points shall be coplanar.

WR3: points[1], points[4], points[8], points[5], shall be coplanar.

WRA4: points[4], points[3], points[7], points[8], shall be coplanar.

WRS5: points[3], points[2], points[6], points[7], shall be coplanar.

WR6: points[1], points[5], points[6], points[2], shall be coplanar.
]

WRT7: points[5], points[6], points[7], points[8], shall all lie on the same side of the plangoints[1],
points[2], points[3].

WRS8: points[3], points[7], points[6], points[2], shall all lie on the same side of the planegoints[1],
points[4], points[8].

128 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

WR9: points[4], points[3], points[7], points[8], shall all lie on the same side of the planegoints[1],
points[2], points[5].

WR10: points[1], points[2], points[3], points[4], shall all lie on the same side of the plangofnts[5],
points[6], points[7].

WR11: points[1], points[4], points[8], points[5], shall all lie on the same side of the plangoints[3],
points[7], points[6].

WR12: points[1], points[5], points[6], points[2], shall all lie on the same side of the plangoints[3],
points[7], points[8].

NOTE - The above 6 rules ensure that goénts define a convex figure.
WR13: points[1] shall have coordinate space dimensionality 3.

4.4.89 spherical_volume

A spherical_volumeis a parametric volume in the form of a sphere of radiusA spherical_volume
is defined by the radius and the position of the solid.

The data is to be interpreted as follows:

C = position.location (centre)
x = position.p[1]

y = position.p[2]

7z = position.p[3]

R = radius

and the volume is parametrised as
T . . TV
V(u,v,w) CHwR COS(;)((COS(?TFU))X + (sin(27u))y) + wR(sm(;))z

where the parametrisation rangdis « <1, 1 <wv<1,and0 < w < 1.

EXPRESS specification

*
)
ENTITY spherical_volume
SUBTYPE OF (volume);
position : axis2_placement_3d;
radius . positive_length_measure;
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 129

ISO 10303-42:2000(E)

Attribute definitions

position: The location and parametric orientation of the sofpidsition.locationis the centre of the
sphere.

radius: The radius of the sphere.

4.4.90 cylindrical_volume

A cylindrical_volume is a parametric volume in the form of a circular cylindercindrical_volume
is defined by its orientation and location, its radius and its height. The datais to be interpreted as follows:

= position.location
= position.p[1]

= position.p[2]

= position.p[3]

= radius

= height

Mon<e % O

and the volume is parametrised as
V(u,v,w) CHwR((cos(2ru))x+ (sin(2ru)y) + vHz

where the parametrisation rangdist « < 1,0 < v < 1,and0 < w < 1.

EXPRESS specification

*

)

ENTITY cylindrical_volume
SUBTYPE OF (volume);
position : axis2_placement_3d;
radius . positive_length_measure;
height : positive_length_measure;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the cylinder.
position.location: A point on the axis of the cylinder.
position.p[3]: The direction of the axis of the cylinder.
radius: The radius of the cylinder.

height: The height of the cylinder.

130 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

4.4.91 eccentric_conical_volume

An eccentric_conical_volumas a parametric volume in the form of a skew cone. Ekbeentric_con-
ical_volumemay have an elliptic cross section, and may have a central axis which is not perpendicular
to the base. Depending upon the value ofrti@ attribute it may be truncated, or may take the form of

a generalised cylinder. When truncated the top face of the cone is parallel to the plane of the base and
has a similar cross section.

The data is to be interpreted as follows:

C = position.location
x = position.p[1]
y = position.p[2]
7z = position.p[3]
Ry = semi_axis_1
Ry, = semi_axis_2
H = height
xo = X offset
yo = y_offset
s = ratio

and the volume is parametrised as
V(u,v,w) CHv(zox+yoy)+w(l+ov(s 1))(Ri(cos(2ru))x+ Ra(sin(2ru)y)+ vHz

where the parametrisation rangdist « < 1,0 < v < 1,and0 < w < 1.

EXPRESS specification

*

)

ENTITY eccentric_conical_volume
SUBTYPE OF (volume);
position . axis2_placement_3d;
semi_axis_1 : positive_length_measure;
semi_axis_2 : positive_length_measure;

height . positive_length_measure;
x_offset . length_measure;
y_offset . length_measure;
ratio . REAL;
WHERE
WR1 : ratio >= 0.0;
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 131

ISO 10303-42:2000(E)

Attribute definitions

position: The location of the centradoint on the axis and the direction eémi_axis_1 This defines
the centre and plane of the base of &eeentric_conical_volumeposition.p[3] is normal to the base of
theeccentric_conical_volume

semi_axis_1:The length of the first radius of the base of the cone in the directiposition.p[1].

semi_axis_2:The length of the second radius of the base of the cone in the directfmwsdion.p[2].
[height] The height of the cone above the base measured in the direcpositbn.p[3].

x_offset: The distance, in the direction @bsition.p[1], from the central point of the top face of the
cone to the point in the plane of this face directly above the central point of the base.

y_offset: The distance, in the direction @bsition.p[2], from the central point of the top face of the
cone to the point in the plane of this face directly above the central point of the base.

ratio: The ratio of a radius of the top face to the corresponding radius of the base of the cone.

Formal propositions

WR1: Theratio shall not be negative.

NOTE 1- In the placement coordinate system definegduwition the central point of the top face of the
eccentric_conical volumehas coordinatege_of fset y_of fset height).

NOTE 2 - Ifratio = 0.0 theeccentric_conical volumeincludes the apex.
If ratio = 1.0 theeccentric_conical volumeis in the form of a generalised cylinder with all cross sections
of the same dimensions.

NOTE 3- Ifx_offset=y offset= 0.0 the eccentric_conical_volume has the form of a ridjiitec cone
or, with Ry R,, aright circular cone.

4.4.92 toroidal_volume

A toroidal_volumeis a parametric volume which could be produced by revolving a circular face about
alineinits plane. The radius of the circle being revolved is referred to here asitbe radius and the
major_radius is the distance from the centre of this circle to the axis of revolutiotaréidal_volume

is defined by the major and minor radii and the position and orientation of theeceurf

The data is to be interpreted as follows:

C = position.location
= position.p[1]

= position.p[2]

= position.p[3]

= major_radius

= minor_radius

5 WN < K
|

132 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

and the volume is parametrised as

V(u,v,w) CH (R+ wrcos(2mv))((cos(2mu))x + (sin(27u))y) + wr(sin(27v))z

where the parametrisation rang@is «, v, w < 1

EXPRESS specification

*
)
ENTITY toroidal_volume
SUBTYPE OF (volume);
position . axis2_placement_3d;
major_radius : positive_length_measure;
minor_radius : positive_length_measure;
WHERE
WR1 : minor_radius < major_radius;
END_ENTITY;
(*

Attribute definitions

position: The location and orientation of the soljghsition.locationis the central point of the torus.
major_radius: The major radius of the torus.

minor_radius: The minor radius of the torus.

Formal propositions

WR1: The minor radius shall be less than the major radius. This ensures that the parametric coordinates
are unique for each point inside the volume.

4.4.93 ellipsoid_volume

An ellipsoid_volumeis a type ofvolumein the form of a solid ellipsoid. It is defined by its location and
orientation and by the lengths of the three semi-axes. The data is to be interpreted as follows:

C = position.location (centre)
= position.p[1]
= position.p[2]
= position.p[3]
= semi_axis_1
= semi_axis_2
= semi_axis 3

A o8 N <Y X
|

(©ISO 2000 — All rights reserved 133

ISO 10303-42:2000(E)

and the volume is parametrised as
T . . TV
Viu,v,w) C+H wcos(;)(a(cos(%'u))x + b(sin(27u))y) + wc(sm(;))z

where the parametrisation rangdist « <1, 1 <ov<1,and0 < w < 1.

EXPRESS specification

*

)

ENTITY ellipsoid_volume

SUBTYPE OF (volume);

position . axis2_placement_3d;
semi_axis_1 : positive_length_measure;
semi_axis_2 : positive_length_measure;
semi_axis_3 : positive_length_measure;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the ellipsoigosition.locationis a cartesian_pointat the
centre of the ellipsoid and the axes of the ellipsoid are aligned with the diregiositson.p.

semi_axis_1:The length of the semi-axis of the ellipsoid in ttieection position.p[1].
semi_axis_2:The length of the semi-axis of the ellipsoid in ttieection position.p[2].

semi_axis_3:The length of the semi-axis of the ellipsoid in ttieection position.p[3].

4.4.94 b_spline_volume

A b_spline_volumeis a general form of tri-parametric volume field which is represented by control
points and basis functions. As with the B-spline curve and surface entities it has special subtypes where
some of the data can be derived. The data is to be interpreted as follows:

a) The symbology used here is:

K1 = upper_index_on_u_control_values
K2 = upper_index_on_v_control_values
K3 = upper_index_on_w_control_values
V.;x = control_values
dl = u_degree
d2 = v_degree
d3 = w_degree

134 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

b) The control values are ordered as

P0007 P0017 P0027 3 PI&"II&"Q(KS 1)s PKIKZKS

c) Foreach parameter, w« oruv,orw if k is the upperindex on the control points ahi$ the degree
for s, the knot array is an array ok + d + 2) real numberss 4, ,sky1], such that for all indices
jin[d,k],s; < s;41. This array is obtained from the appropri&tets_datalist by repeating
each miltiple knotaccording to the mitiplicity.

N£, theith normalised B-spline basis function of degreés defined on the subset
[si 4, ,si+1) Of thisarray.

d) LetL denote the number of distinct values amongst the knots in the knok lisiij be referred to

as the ‘upper index on knots’. Let; denote the multiplicity (i.e., number of repetitions) of tith
distinct knot value. Then:

L
Somig d4k+2

i1
All knot multiplicities except the first and the last shall be in the rahge d; the first and last may

have a maximum value @f+ 1. In evaluating the basis functions, a knoof, e.g., multiplicity3 is
interpreted as a sequencen, u, in the knot array.

e) The parametric volume is given by the equation:
K1 K2 K3

V(u,v,w) Z Z Z PijkNZdl(u)N]dz(v)NgS(w)

1 07 0k O

EXPRESS specification

*
)
ENTITY b_spline_volume
SUPERTYPE OF (ONEOF(b_spline_volume_with_knots, uniform_volume,
guasi_uniform_volume,bezier_volume) ANDOR
rational_b_spline_volume)
SUBTYPE OF (volume);

u_degree . INTEGER,;
v_degree . INTEGER,;
w_degree . INTEGER,;
control_points_list : LIST [2:?] OF
LIST [2:?] OF
LIST [2:?] OF cartesian_point;
DERIVE
u_upper : INTEGER := SIZEOF(control_points_list) - 1;
V_upper : INTEGER := SIZEOF(control_points_list[1]) - 1;
w_upper : INTEGER := SIZEOF(control_points_list[1][1]) - 1;
control_points : ARRAY [O:u_upper] OF ARRAY [0:v_upper]

(©ISO 2000 — All rights reserved 135

ISO 10303-42:2000(E)

OF ARRAY [0:w_upper] OF cartesian_point
:= make_array_of array of array (control_points_list,
0,u_upper,0,v_uppet,
O,w_upper);
WHERE
WR1: (GEOMETRY_SCHEMA.BEZIER_VOLUME’ IN TYPEOF(SELF)) OR
(GEOMETRY_SCHEMA.UNIFORM_VOLUME’ IN TYPEOF(SELF)) OR
(GEOMETRY_SCHEMA.QUASI_UNIFORM_VOLUME’ IN TYPEOF(SELF)) OR
(GEOMETRY_SCHEMA.B_SPLINE_VOLUME_WITH_KNOTS’ IN TYPEOF(SELF)) ;
END_ENTITY;

(*

Attribute definitions

u_degree: Algebraic degree of basis functionsin u.

v_degree: Algebraic degree of basis functions in v.

w_degree: Algebraic degree of basis functions in w.
control_values_list: This is a list of lists of lists of control values.
u_upper: Upper index on control values in u direction.
v_upper: Upper index on control values in v direction.
w_upper: Upper index on control values in w direction.

control_values: Array (three-dimensional) of control values defining field geometry. This array is con-
structed from the control values list.

Formal propositions

WR1: Any instantiation of this entity shall include one of the subtypes
b_spline_volume_with_knotsor bezier_volume or uniform_volume, or quasi_uniform_volume

4.4.95 b_spline_volume_with_knots

This is a B-spline volume in which the knot values are explicitly given. This subtype shall be used to
represent non-uniform B-spline volumes, and may also be used for other knot types.

All knot multiplicities except the first and the last shall be in the rahge degree; the first and last may
have a maximum value @legree + 1.

In evaluating the basis functions, a knoof, e.g., multiplicity3 is interpreted as a sequenegu, u, in
the knot array.

136 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*

)

ENTITY b_spline_volume_with_knots
SUBTYPE OF (b_spline_volume);
u_multiplicities : LIST [2:?] OF INTEGER,;
v_multiplicities : LIST [2:?] OF INTEGER,;
w_multiplicities : LIST [2:?] OF INTEGER;

u_knots . LIST [2:?] OF parameter_value;

v_knots . LIST [2:?] OF parameter_value;

w_knots . LIST [2:?] OF parameter_value;
DERIVE

knot_u_upper : INTEGER := SIZEOF(u_knots);

knot_v_upper : INTEGER := SIZEOF(v_knots);

knot_w_upper : INTEGER := SIZEOF(w_knots);
WHERE

WRZ1: constraints_param_b_spline(SELF\b_spline_volume.u_degree,
knot_u_upper, SELF\b_spline_volume.u_upper,
u_multiplicities, u_knots);
WR2: constraints_param_b_spline(SELF\b_spline_volume.v_degree,
knot_v_upper, SELF\b_spline_volume.v_upper,
v_multiplicities, v_knots);
WR3: constraints_param_b_spline(SELF\b_spline_volume.w_degree,
knot_w_upper, SELF\b_spline_volume.w_upper,
w_multiplicities, w_knots);
ot_u_upper,;
ot_v_upper,
knot_w_upper;

WRA4: SIZEOF(u_multiplicities) =
WR5: SIZEOF(v_multiplicities) =
WR6: SIZEOF(w_multiplicities) =
END_ENTITY;
(*

kn
kn

Attribute definitions

u_multiplicities: The multiplicities of the knots in the u parameter direction.
v_multiplicities: The multiplicities of the knots in the v parameter direction.
w_multiplicities: The multiplicities of the knots in the w parameter direction.
u_knots: The list of the distinct knots in the u parameter direction.

v_knots: The list of the distinct knots in the v parameter direction.

w_knots: The list of the distinct knots in the w parameter direction.
knot_u_upper: The number of distinct knots in the u parameter direction.
knot_v_upper: The number of distinct knots in the v parameter direction.
knot_v_upper: The number of distinct knots in the v parameter direction.

SELF\b_spline_volume.u_degree:Algebraic degree of basis functions in u.

(©ISO 2000 — All rights reserved 137

ISO 10303-42:2000(E)

SELF\b_spline_volume.v_degreeAlgebraic degree of basis functions in v.
SELF\b_spline_volume.w_degreeAlgebraic degree of basis functions in w.
SELF\b_spline_volume.control_values_listThis is a list of lists of control values.
SELF\b_spline_volume.uupper: Upper index on control values in u direction.
SELF\b_spline_volume.vupper: Upper index on control values in v direction.
SELF\b_spline_volume.wupper: Upper index on control values in w direction.

SELF\b_spline_volume.control_values:Array (three-dimensional) of control values defining field val-
ues. This array is constructed from the control values lists.

Formal propositions

WR1: constraints_param_b_splinereturns TRUE when the parameter constraints are verified for the
u-direction.

WR2: constraints_param_b_splinereturns TRUE when the parameter constraints are verified for the
v-direction.

WR3: constraints_param_b_splinereturns TRUE when the parameter constraints are verified for the
w-direction.

WR4: The number oti_multiplicities shall be the same as the numbeuoknots.
WR5: The number of/_multiplicities shall be the same as the numbevoknots.

WRG6: The number ofv_multiplicities shall be the same as the numbemofknots.

4.4.96 bezier volume

This is a special type of tri-parametric volume which can be represented as a subtypsplifie_-
volume in which the knots are evenly spaced and have highipigities. Suitable default values for

the knots and knot multiplicities are derived in this case. In this subtype the knot spacing is 1.0, starting
from 0.0.

EXPRESS specification

%)
ENTITY bezier_volume

SUBTYPE OF (b_spline_volume);
END_ENTITY;

(*

NOTE - If explicit knot values for the volume are required, they can be derived as follows:

138 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

SELF\b spline volume u_upper .

ku—up SELF\b_spline_volume u_degree + 15
SELF\b_spline_volume v_upper .

- kv—up SELF\b_spline_volume v_degree + 1’
. kw_up SELF\b spline volume w_upper +1;

SELF\b_spline_volume w_degree

ku_up is the value required for the upper index on the knot and knot multiplicity lists in the u direction. This
is computed from the degree and the number of control values in this direction.

Similar computations are used to determiweup, kw_up.

The knot multiplicities and knots in theandv parameter directions are then given by the function calls:
default_b_spline_knot_mul{SELF\b_spline_volume.u_degree, ku_up, bezier_knots)
default_b_spline_knot¢SELF\b_spline_volume.u_degree,ku_up, bezier_knots)
default_b_spline_knot_mul{SELF\b_spline_volume.v_degree, kv_up, bezier_knots)
default_b_spline_knot¢SELF\b_spline_volume.v_degree,kv_up, bezier_knots)
default_b_spline_knot_mul{SELF\b_spline_volume.w_degree, kw_up, bezier_knots)
default_b_spline_knot¢SELF\b_spline_volume.w_degree,kw_up, bezier_knots)

4.4.97 uniform_volume

This is a special subtype &f spline_volumein which the knots are evenly spaced. Suitable default
values for the knots and knot multiplicities can be derived in this case.

A B-spline isuniformif and only if all knots are of multiplicity 1 and they differ by a positive constant
from the preceding knot. In this subtype the knot spacing is 1.0, starting frdimree.

EXPRESS specification

*)
ENTITY uniform_volume

SUBTYPE OF (b_spline_volume);
END_ENTITY;

(*
NOTE - If explicit knot values for the volume are required, they can be derived as follows:
— ku_up SELF\b_spline_volume u_upper + SELF\b_spline_volume u_degree + 2;
— kv_up SELF\b_spline_volume v_upper + SELF\b_spline_volume v_degree + 2;
— kw_up SELF\b_spline_volume w_upper + SELF\b_spline_volume w_degree + 2;
ku_up is the value required for the upper index on the knot and knot multiplicity lists in the u direction. This
is computed from the degree and the number of control points in this direction.
kv_up is the value required for the upper index on the knot and knot multiplicity lists in the v direction. This

is computed from the degree and the number of control points in this dire&torup is the value required
for the upper index on the knot and knot multiplicity lists in the w direction. This is computed from the

(©ISO 2000 — All rights reserved 139

ISO 10303-42:2000(E)

degree and the number of control points in this direction.

The knot multiplicities and knots in the v andw parameter directions are then given by the function calls:
default_b_spline_knot_mul{SELF\b_spline_volume.u_degree, ku_up, uniform_knots)
default_b_spline_knot¢SELF\b_spline_volume.u_degree,ku_up, uniform_knots)
default_b_spline_knot_mul{SELF\b_spline_volume.v_degree, kv_up, uniform_knots)
default_b_spline_knot¢SELF\b_spline_volume.v_degree,kv_up, uniform_knots)
default_b_spline_knot_mul{SELF\b_spline_volume.w_degree, kw_up, uniform_knots)
default_b_spline_knot¢SELF\b_spline_volume.w_degree,kw_up, uniform_knots)

4.4.98 qguasi_uniform_volume

This is a special subtype df spline_volumein which the knots are evenly spaced, and except for the
first and last, have multiplicity 1. Suitable default values for the knots and knot multiplicities are derived
in this case.

A B-spline isquasi-uniformif and only if the knots are of multiplicity (degree+1) at the ends, of multi-

plicity 1 elsewhere, and they differ by a positive constant from the preceding knot. In this subtype the
knot spacing is 1.0, starting from 0.0.

EXPRESS specification

*)

ENTITY quasi_uniform_volume
SUBTYPE OF (b_spline_volume);

END_ENTITY;

(*

NOTE - If explicit knot values for the volume are required, they can be derived as follows:
— ku_up SELF\b_spline_volume u_upper SELF\b_spline_volume u_degree + 2;
— kv_up SELF\b_spline_volume v_upper SELF\b_spline_volume v_degree + 2;
— kw_up SELF\b_spline_volume w_upper SELF\b_spline_volume w_degree + 2;

ku_up is the value required for the upper index on the knot and knot multiplicity lists in the u direction. This
is computed from the degree and the number of control points in this direction.

kv_up is the value required for the upper index on the knot and knot multiplicity lists in the v direction. This
is computed from the degree and the number of control points in this dire&torup is the value required

for the upper index on the knot and knot multiplicity lists in the w direction. This is computed from the
degree and the number of control points in this direction. The knot multiplicities and knots inahewv
parameter directions are then given by the function calls:
default_b_spline_knot_mul{SELF\b_spline_volume.u_degree, ku_up, quasi_uniform_knots)
default_b_spline_knot¢SELF\b_spline_volume.u_degree,ku_up, quasi_uniform_knots)
default_b_spline_knot_mul{SELF\b_spline_volume.v_degree, kv_up, quasi_uniform_knots)
default_b_spline_knot¢SELF\b_spline_volume.v_degree,kv_up, quasi_uniform_knots)

140 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

default_b_spline_knot_mul{SELF\b_spline_volume.w_degree, kw_up, quasi_uniform_knots)
default_b_spline_knot¢SELF\b_spline_volume.w_degree,kw_up, quasi_uniform_knots)

4.4.99 rational_b_spline_volume

A rational_b_spline_volumeis a piecewise parametric rational volume described in terms of control
points, associated weight values and basis functions. It is instantiated with any of the other subtypes
of b_spline_volume which provide explicit or implicit knot values from which the basis functions are
defined.

The volume is to be interpreted as follows:

SO SR R win P N (W) N2 (0) NP (w)

SRR SR wik NP (W) N2 (v) NP (w)

Vi(u,v)

NOTE - See 4.4.94 for details of the symbology used in the above equation.

EXPRESS specification

*)
ENTITY rational_b_spline_volume
SUBTYPE OF (b_spline_volume);
weights_data : LIST [2:?] OF
LIST [2:?] OF
LIST [2:?] OF REAL;

DERIVE
weights : ARRAY [0:u_upper] OF
ARRAY [0:v_upper] OF
ARRAY [0O:w_upper] OF REAL
:= make_array_of_array_of_array
(weights_data,0,u_upper,0,v_upper,0,w_upper);
WHERE

WR1: (SIZEOF(weights_data) =
SIZEOF(SELF\b_spline_volume.control_points_list))
AND (SIZEOF(weights_data[1]) =
SIZEOF(SELF\b_spline_volume.control_points_list[1]))
AND (SIZEOF(weights_data[1][1]) =
SIZEOF(SELF\b_spline_volume.control_points_list[1][1]));
WR2: volume_weights_positive(SELF);
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 141

ISO 10303-42:2000(E)

Attribute definitions

weights_data: The weights associated with the control points in the rational case.

weights: Array (two-dimensional) of weight values constructed fromifeéghts_data

Formal propositions

WR1: The array dimensions for the weights shall be consistent with the control points data.

WR2: The weight value associated with each control point shall be greater than zero.

4.5 Geometry schema rule definition: compatible _dimension
The rulecompatible_dimensionensures that:

a) allgeometric_representation_itens are geometrically founded in one or more
geometric_representation_contextoordinate spaces;

b) whengeometric_representation_iterns are geometrically founded together in a coordinate space,
they have the same coordinate spditeension_countby ensuring that each matches thimen-
sion_countof the coordinate space in which it is geometrically founded.

NOTE - Two-dimensionafjeometric_representation_itens that are geometrically founded igaomet-
ric_representation_contextare only geometrically founded geometric_representation_contexd with a
coordinate_space_dimensionf 2.

All geometric_representation_itemdounded in such a context are two-dimensional. All other values of
dimension_countbehave similarly.

EXPRESS specification

*
)
RULE compatible_dimension FOR
(cartesian_point,
direction,
representation_context,
geometric_representation_context);
WHERE

-- ensure that the count of coordinates of each cartesian_point

-- matches the coordinate_space_dimension of each geometric_context in

-- which it is geometrically founded

WR1: SIZEOF(QUERY(x <* cartesian_point| SIZEOF(QUERY
(y <* geometric_representation_context | item_in_context(x,y) AND
(HINDEX(x.coordinates) <> y.coordinate_space_dimension))) > 0)) =0;

-- ensure that the count of direction_ratios of each direction

142 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

-- matches the coordinate_space_dimension of each geometric_context in
-- which it is geometrically founded
WR2: SIZEOF(QUERY(x <* direction | SIZEOF(QUERY
(y <* geometric_representation_context | item_in_context(x,y) AND
(HIINDEX(x.direction_ratios) <> y.coordinate_space_dimension)))
>0) =0;
END_RULE;
(*

Formal propositions

WRZ1: There shall be neartesian_pointthat has a number of coordinates that differs from d¢be
ordinate_space_dimensiorof the geometric_representation_contexd in which it is geometrically
founded.

WR2: There shall be ndlirection that has a number dfirection_ratios that differs from theco-
ordinate_space_dimensiorof the geometric_representation_contexd in which it is geometrically
founded.

NOTE - A check of onlycartesian_point anddirections is sufficient for algeometric_representation_-
items because:

a) All geometric_representation_itens appear in trees akpresentation_itens descending from the
items attribute of entityrepresentation See WR1 of entityepresentation_itemin 1ISO 10303-43.

b) Eachgeometric_representation_itengains its position and orientation information only by being, or
referring to, acartesian_pointor direction entity in such a tree. In many cases this reference is made
via anaxis_placement

c) No other use of angeometric_representation_itemis allowed that would associate it with a coordi-
nate space or otherwise assigdimension_count

4.6 Geometry function definitions

The EXPRESS language has a number of built-in functions. This section describes additional functions
required for the definition and constraints on gemmetry_schema

4.6.1 dimension_of
The functiondimension_ofreturns the dimensionality of the inpgeéometric_representation_item If
the item is acartesian_point direction, or vector, the dimensionality is obtained directly by counting

components.

For all other other subtypes the dimensionality is the intelj@ension_countof a geometric_repre-
sentation_contextin which the inpugeometric_representation_items geometrically founded.

(©ISO 2000 — All rights reserved 143

ISO 10303-42:2000(E)

By virtue of the constraints in global rutmmpatible_dimension this value is theoordinate_space_-
dimensionof the inputgeometric_representation_item See 4.5 for definition of this rule.

EXPRESS specification

*
)
FUNCTION dimension_of(item : geometric_representation_item) :
dimension_count;
LOCAL
X : SET OF representation;
y : representation_context;
dim : dimension_count;
END_LOCAL;
-- For cartesian_point, direction, or vector dimension is determined by
-- counting components.
IF 'GEOMETRY_SCHEMA.CARTESIAN_POINT' IN TYPEOF(item) THEN
dim := SIZEOF(item\cartesian_point.coordinates);
RETURN(dim);
END_IF;
IF '"GEOMETRY_SCHEMA.DIRECTION’ IN TYPEOF(item) THEN
dim := SIZEOF(item\direction.direction_ratios);
RETURN(dim);
END_IF;
IF '"GEOMETRY_SCHEMA.VECTOR’' IN TYPEOF(item) THEN
dim := SIZEOF(item\vector.orientation\direction.direction_ratios);
RETURN(dim);
END_IF;
-- For all other types of geometric_representation_item dim is obtained
-- via context.
-- Find the set of representation in which the item is used.

X = using_representations(item);

-- Determines the dimension_count of the

-- geometric_representation_context. Note that the

-- RULE compatible_dimension ensures that the context_of items

-- is of type geometric_representation_context and has

-- the same dimension_count for all values of x.

-- The SET x is non-empty since this is required by WR1 of

-- representation_item.
y = X[1].context_of_items;
dim := y\geometric_representation_context.coordinate_space_dimension;
RETURN (dim);

END_FUNCTION,;
(*

144 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Argument definitions

item: (input) ageometric_representation_itenfor which thedimension_countis determined.

4.6.2 acyclic_curve_replica

Theacyclic_curve_replicaboolean function is a recursive function which determines whether, or not, a
givencurve_replicaparticipates in its own definition. The function returns FALSE if tieve_replica
refers to itself, directly or indirectly, in its own definition.

EXPRESS specification

*
)
FUNCTION acyclic_curve_replica(rep : curve_replica; parent : curve)
: BOOLEAN,;
IF NOT ((GEOMETRY_SCHEMA.CURVE_REPLICA") IN TYPEOF(parent)) THEN
RETURN (TRUE);
END_IF;
(* Return TRUE if the parent is not of type curve_replica *)
IF (parent :=: rep) THEN
RETURN (FALSE);
(* Return FALSE if the parent is the same curve_replica, otherwise,
call function again with the parents own parent_curve. *)
ELSE
RETURN(acyclic_curve_replica(rep,
parent\curve_replica.parent_curve));
END_IF;
END_FUNCTION;
(*

Argument definitions

rep: (input) Thecurve_replicawhich is to be tested for a cyclic reference.

parent: (input) A curve used in the definition of the replica.

4.6.3 acyclic_point_replica

Theacyclic_point_replicaboolean function is a recursive function which determines whether, or not, a
givenpoint_replica participates in its own definition. The function returns FALSE if goént_replica
refers to itself, directly or indirectly, in its own definition.

(©ISO 2000 — All rights reserved 145

ISO 10303-42:2000(E)

EXPRESS specification

*
)
FUNCTION acyclic_point_replica(rep : point_replica; parent : point)
: BOOLEAN,;
IF NOT ((GEOMETRY_SCHEMA.POINT_REPLICA") IN TYPEOF(parent)) THEN
RETURN (TRUE);
END_IF;
(* Return TRUE if the parent is not of type point_replica *)
IF (parent :=: rep) THEN
RETURN (FALSE);
(* Return FALSE if the parent is the same point_replica, otherwise,

call function again with the parents own parent_pt. *)
ELSE RETURN(acyclic_point_replica(rep, parent\point_replica.parent_pt));
END_IF;

END_FUNCTION,;
(*

Argument definitions

rep: (input) Thepoint_replica which is to be tested for a cyclic reference.

parent: (input) A point used in the definition of the replica.

4.6.4 acyclic_surface_replica

Theacyclic_surface_replicaboolean function is a recursive function which determines whether, or not,
a givensurface_replicaparticipates in its own definition. The function returns FALSE if sugface_-
replica refers to itself, directly or indirectly, in its own definition.

EXPRESS specification

*
)
FUNCTION acyclic_surface_replica(rep : surface_replica; parent : surface)
: BOOLEAN,;
IF NOT ((GEOMETRY_SCHEMA.SURFACE_REPLICA’) IN TYPEOF(parent)) THEN
RETURN (TRUE);
END_IF;
(* Return TRUE if the parent is not of type surface_replica *)
IF (parent :=: rep) THEN
RETURN (FALSE);
(* Return FALSE if the parent is the same surface_replica, otherwise,
call function again with the parents own parent_surface. *)
ELSE RETURN(acyclic_surface_replica(rep,
parent\surface_replica.parent_surface));
END_IF;

146 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_FUNCTION,;
(*

Argument definitions

rep: (input) Thesurface_replicawhich is to be tested for a cyclic reference.

parent: (input) A surfaceused in the definition of the replica.

4.6.5 associated_surface

This function determines the unique surface which is associated withttlree_or_surfacetype. Itis
required by the propositions which apply to surface curve and its subtypes.

EXPRESS specification

*
)
FUNCTION associated_surface(arg : pcurve_or_surface) : surface;
LOCAL
surf : surface;
END_LOCAL;

IF '"GEOMETRY_SCHEMA.PCURVE' IN TYPEOF(arg) THEN
surf := arg.basis_surface;
ELSE
surf := arg;
END_IF;
RETURN(surf);
END_FUNCTION;

(*

Argument definitions

arg: (input) Thepcurve_or_surfacefor which the determination of the associated parent surface is
required.

surf: (output) The parent surface associated \aitf).

4.6.6 base axis

This function returns normalised orthogonal directiarj&], u[2] and, if appropriatey[3].

(©ISO 2000 — All rights reserved 147

ISO 10303-42:2000(E)

In the three-dimensional case, with complete input daft3], is in the direction ofaxis3, u[l]is in the
direction of the projection adixislonto the plane normal 3], andu[2] is orthogonal to bothk[1] and
u[3], taking the same sensea&s2

In the two-dimensional casg1] is in the direction obxislandu[2] is perpendicular to this, taking its
sense fromaxis2

For incomplete input data appropriate default values are derived.
NOTE 1- This function does not provide geometric founding fordhrections returned, the caller of the

the function is responsible for ensuring that they are usedépr@sentationwith ageometric_representa-
tion_context

EXPRESS specification

)
FUNCTION base_axis(dim : INTEGER; axisl, axis2, axis3 : direction) :
LIST [2:3] OF
direction;
LOCAL
u : LIST [2:3] OF direction;

factor . REAL;
dl, d2 : direction;
END_LOCAL;

IF (dim = 3) THEN
dl := NVL(normalise(axis3), dummy gri || direction([0.0,0.0,1.0]));
d2 := first_proj_axis(d1,axisl);
u = [d2, second_proj_axis(d1,d2,axis2), di];
ELSE
IF EXISTS(axis1l) THEN
dl := normalise(axisl);
u := [d1, orthogonal_complement(d1)];
IF EXISTS(axis2) THEN

factor := dot_product(axis2,u[2]);

IF (factor < 0.0) THEN
u[2].direction_ratios[1] :
u[2].direction_ratios[2] :

END_IF;

END_IF;
ELSE
IF EXISTS(axis2) THEN
dl := normalise(axis2);
u := [orthogonal_complement(dl), di];

-u[2].direction_ratios[1];
-u[2].direction_ratios[2];

u[l].direction_ratios[1] := -u[1].direction_ratios[1];
u[l].direction_ratios[2] := -u[l].direction_ratios[2];
ELSE

u := [dummy gri || direction([1.0, 0.0]), dummy_gri ||
direction([0.0, 1.0])];

148 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_IF;
END_IF;
END_IF;
RETURN(u);
END_FUNCTION;

(*

Argument definitions

dim: (input) The integer value of the dimensionality of the space in which the normalised orthogonal
directions are required.

axisl: (input) A direction used as a first approximation to the direction of outputuggis
axis2: (input) A direction used to determine the sense|@f.
axis3: (input) The direction ofi[3] in the casalim = 3, or indeterminate in the cagém = 2.

u: (output) A list ofdim (i.e., 2 or 3) mutually perpendicular directions.

4.6.7 build_2axes

This function returns two normalised orthogonal directiarj4] is in the direction of
ref_direction andu[2] is perpendicular ta[1]. A default value of (1.0, 0.0) is supplied faaf_direction
if the input data is incomplete.

NOTE 1- This function does not provide geometric founding fordhrections returned, the caller of the
the function is responsible for ensuring that they are usedépr@sentationwith ageometric_representa-
tion_context

EXPRESS specification

*)
FUNCTION build_2axes(ref_direction : direction) : LIST [2:2] OF direction;
LOCAL
d : direction := NVL(normalise(ref_direction),
dummy_gri || direction([1.0,0.0]));
END_LOCAL;

RETURN([d, orthogonal_complement(d)]);
END_FUNCTION;

(*

Argument definitions

ref_direction: (input) A reference direction in 2 dimensional space, this may be defaulted to (1.0, 0.0).

(©ISO 2000 — All rights reserved 149

ISO 10303-42:2000(E)

u: (output) A list of 2 mutually perpendicular directiongl] is parallel toref_direction.

4.6.8 build_axes

This function returns three normalised orthogonal directiaf. is in the direction ofxis, u[1] isin the
direction of the projection ofef_direction onto the plane normal t9[3], andu[2] is the cross product
of u[3] andu[1]. Default values are supplied if input data is incomplete.

NOTE 1- This function does not provide geometric founding fordhvections returned, the caller of the

the function is responsible for ensuring that they are usedépr@sentationwith ageometric_representa-
tion_context

EXPRESS specification

*)
FUNCTION build_axes(axis, ref direction : direction) :
LIST [3:3] OF direction;

LOCAL
dl, d2 : direction;
END_LOCAL;

dl := NVL(normalise(axis), dummy_gri || direction([0.0,0.0,1.0]));
d2 := first_proj_axis(dl, ref_direction);

RETURN([d2, normalise(cross_product(d1,d2)).orientation, d1]);
END_FUNCTION;

(*

Argument definitions

axis: (input) The intended direction aff3], this may be defaulted to (0.0, 0.0, 1.0).
ref_direction: (input) Adirection in a direction used to computg1].

u: (output) A list of 3 mutually orthogonalirections in 3D space.

4.6.9 orthogonal_complement

This function returns direction which is the orthogonal complement of the inglirection. The input
direction shall be a two-dimensiondirection and the result is two dimensional and perpendicular to
the inputdirection.

NOTE 1- This function does not provide geometric founding fordhrection returned, the caller of the

the function is responsible for ensuring that it is usedrepsesentation with ageometric_representation_-
context

150 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*
)
FUNCTION orthogonal_complement(vec : direction) : direction;
LOCAL
result : direction ;
END_LOCAL;

IF (vec.dim <> 2) OR NOT EXISTS (vec) THEN
RETURN(?);
ELSE
result := dummy_gri || direction([-vec.direction_ratios[2],
vec.direction_ratios[1]]);
RETURN(result);
END_IF;
END_FUNCTION;
(*

Argument definitions

vec: (input) A direction in 2D space.

result: (output) A direction orthogonal teec.

4.6.10 first_proj_axis

This function produces a 3-dimensiortection which is, with fully defined input, the projection of
arg onto the plane normal to the axis With arg defaulted the result is the projection of (1, 0, 0) onto
this plane; except that #_axis= (1, 0, 0), (0, 1, 0) is the default farg. A violation occurs ifarg is in
the same direction as the inputaxis

NOTE 1- This function does not provide geometric founding fordhrection returned, the caller of the
the function is responsible for ensuring that it is usedrepsesentation with ageometric_representation_-
context

EXPRESS specification

*
)
FUNCTION first_proj_axis(z_axis, arg : direction) : direction;
LOCAL
x_axis : direction;
\Y; . direction;
z . direction;
X_vec : vector;
END_LOCAL;

(©ISO 2000 — All rights reserved 151

ISO 10303-42:2000(E)

IF (NOT EXISTS(z_axis)) THEN
RETURN (?) ;
ELSE
z := normalise(z_axis);
IF NOT EXISTS(arg) THEN
IF (z.direction_ratios <> [1.0,0.0,0.0]) THEN
v = dummy_gri || direction([1.0,0.0,0.0]);
ELSE
v = dummy_gri || direction([0.0,1.0,0.0]);
END_IF;
ELSE
IF (arg.dim <> 3) THEN
RETURN (?) ;
END_IF;
IF ((cross_product(arg,z).magnitude) = 0.0) THEN
RETURN (?);
ELSE
v = normalise(arg);
END_IF;
END_IF;
X_vec := scalar_times_vector(dot_product(v, z), z);
x_axis := vector_difference(v, x_vec).orientation;
X_axis := normalise(x_axis);
END_IF;
RETURN(x_axis);
END_FUNCTION;
(*

Argument definitions

z_axis: (input) A direction defining a local Z coordinate axis.
arg: (input) A direction not parallel taz_axis

x_axis: (output) Adirection which is in the direction of the projection afg onto the plane with normal
Z_axis

4.6.11 second_proj_axis

This function returns the normaliséitection that is simultaneously the projectionarfy onto the plane
normal to thedirection z_axisand onto the plane normal to tléection x_axis. If arg is NULL, the
projection of the direction (0, 1, 0) onin axisis returned.

NOTE 1- This function does not provide geometric founding fordhrection returned, the caller of the
the function is responsible for ensuring that it is usedrepsesentation with ageometric_representation_-
context

152 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*
)
FUNCTION second_proj_axis(z_axis, x_axis, arg: direction) : direction;
LOCAL
y_axis : vector;
\Y; . direction;
temp : vector;
END_LOCAL;

IF NOT EXISTS(arg) THEN
v = dummy_gri || direction([0.0,1.0,0.0]);

ELSE
vV = arg;
END_IF;
temp := scalar_times_vector(dot_product(v, z_axis), z_axis);
y_axis := vector_difference(v, temp);
temp := scalar_times_vector(dot_product(v, x_axis), X_axis);

y_axis := vector_difference(y_axis, temp);

y_axis := normalise(y_axis);

RETURN(y_axis.orientation);
END_FUNCTION;

(*

Argument definitions

z_axis: (input) A direction defining a local Z axis.
x_axis: (input) A direction not parallel ta_axis
arg: (input) A direction which is used as the first approximation to the direction akis

y_axis.orientation: (output) A direction determined by first projectiagg onto the plane with normal
z_axis then projecting the result onto the plane normaf taxis

4.6.12 cross_product

This function returns the vector, or cross, product of two ingitéctions. The inputdirections must

be three-dimensional and are normalised at the start of the computation. The result is alwelgs a
which is unitless. If the input directions are either parallel or anti-parallel, a vector of zero magnitude is
returned withvector.orientation asarg1l.

NOTE 1- This function does not provide geometric founding fontbetor returned, the caller of the the
function is responsible for ensuring that it is used irepresentation with a geometric_representation_-
context

(©ISO 2000 — All rights reserved 153

ISO 10303-42:2000(E)

EXPRESS specification

*
)
FUNCTION cross_product (argl, arg2 : direction) : vector;
LOCAL
mag . REAL;
res . direction;
vlv2 : LIST[3:3] OF REAL;
result : vector;
END_LOCAL;

IF (NOT EXISTS (argl) OR (argl.dim
(NOT EXISTS (arg2) OR (arg2.dim
RETURN(?);
ELSE
BEGIN
vl normalise(argl).direction_ratios;
v2 normalise(arg2).direction_ratios;
res := dummy_gri || direction([(v1[2]*v2[3] - Vv1[3]*v2[2]),
(VA[3]*v2[1] - vi[1]*v2[3]), (Vi[1]*v2[2] - vi[2]*v2[1])]);
mag := 0.0;
REPEAT i := 1 TO 3;
mag = mag + res.direction_ratios[i]*res.direction_ratios]i];
END_REPEAT,
IF (mag > 0.0) THEN
result := dummy_gri || vector(res, SQRT(mag));

2)) OR
2)) THEN

ELSE
result := dummy_gri || vector(argl, 0.0);
END_IF;
RETURN(result);
END;
END_IF;

END_FUNCTION,;
(*

Argument definitions

argl: (input) A direction defining the first operand in cross product operation.
arg2: (input) A direction defining the second operand for cross product.

result: (output) Avector which is the cross product @irgl andarg2.

4.6.13 dot_product

This function returns the scalar, or daj, (product of twodirections. The input arguments can be
directions in either two- or three-dimensional space and are normalised at the start of the computation.

154 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

The returned scalar is undefined if the inglitections have different dimensionality, or if either is
undefined.

EXPRESS specification

*
)
FUNCTION dot_product(argl, arg2 : direction) : REAL;
LOCAL
scalar : REAL;
vecl, vec2: direction;
ndim : INTEGER;
END_LOCAL;
IF NOT EXISTS (argl) OR NOT EXISTS (arg2) THEN
scalar = ?;
(* When function is called with invalid data an indeterminate result
is returned *)
ELSE
IF (argl.dim <> arg2.dim) THEN
scalar = ?;
(* When function is called with invalid data an indeterminate result
is returned *)
ELSE
BEGIN
vecl := normalise(argl);
vec2 = normalise(arg2);
ndim = argl.dim;
scalar := 0.0;
REPEAT i := 1 TO ndim;
scalar := scalar +
vecl.direction_ratios[i]*vec2.direction_ratiosi];
END_REPEAT,
END;
END_IF;
END_IF;

RETURN (scalar);
END_FUNCTION;

(*

Argument definitions

argl: (input) A direction defining first vector in dot product, or scalar product, operation.
arg2: (input) A direction defining second operand for dot product operation.

scalar: (output) A scalar which is the dot productaigl andarg?2.

(©ISO 2000 — All rights reserved 155

ISO 10303-42:2000(E)

4.6.14 normalise

This function returns &ector or direction whose components are normalised to have a sum of squares
of 1.0. The output is of the same typdirection or vector, with the same units) as the input argument.
If the input argument is not defined or is of zero length, the output vector is undefined.

NOTE 1- This function does not provide geometric founding for divection, or vector, returned, the
caller of the the function is responsible for ensuring that it is usedrépeesentation with a geometric_-
representation_context

EXPRESS specification

*
)
FUNCTION normalise (arg : vector_or_direction) : vector_or_direction;
LOCAL
ndim . INTEGER;
\Y; . direction;
result : vector_or_direction;
vec . vector;
mag . REAL;
END_LOCAL;
IF NOT EXISTS (arg) THEN
result := ?;
(* When function is called with invalid data a NULL result is returned *)
ELSE

ndim := arg.dim;
IF '"GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF(arg) THEN
BEGIN
v := dummy_gri || direction(arg.orientation.direction_ratios);
IF arg.magnitude = 0.0 THEN

RETURN(?);
ELSE
vec = dummy_gri || vector (v, 1.0);
END_IF;
END;
ELSE
v = dummy_gri || direction (arg.direction_ratios);
END_IF;
mag := 0.0;
REPEAT i := 1 TO ndim;
mag := mag + v.direction_ratios[i]*v.direction_ratios][il;
END_REPEAT,

IF mag > 0.0 THEN
mag := SQRT(mag);

REPEAT i := 1 TO ndim;
v.direction_ratiosJi] := v.direction_ratios][i}/mag;
END_REPEAT,

IF 'GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF(arg) THEN

156 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

vec.orientation = v;
result := vec;
ELSE
result := v;
END_IF;
ELSE
RETURN(?);
END_IF;
END_IF;
RETURN (result);
END_FUNCTION;

(*

Argument definitions

arg: (input) A vector or direction to be normalised.

result: (output) Avector or direction which is parallel taarg, of unit length and of the same type.

4.6.15 scalar_times_vector

This function returns the vector that is the scalar multiple of the input vectacckpts as input a scalar
and a ‘vector’ which may be eitherdirection or avector. The output is asector of the same units as
the inputvector, or unitless if adirection is input. If either input argument is undefined, the returned
vector is also undefined. Therientation of thevector is reversed if the scalar is negative.

NOTE 1- This function does not provide geometric founding fontbetor returned, the caller of the the
function is responsible for ensuring that it is used irepresentation with a geometric_representation_-
context

EXPRESS specification

*
)
FUNCTION scalar_times_vector (scalar : REAL; vec : vector_or_direction)
. vector;
LOCAL
\Y; . direction;
mag . REAL;
result : vector;
END_LOCAL;

IF NOT EXISTS (scalar) OR NOT EXISTS (vec) THEN

RETURN (?) ;

ELSE

IF '"GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF (vec) THEN
% := dummy_gri || direction(vec.orientation.direction_ratios);

(©ISO 2000 — All rights reserved 157

ISO 10303-42:2000(E)

mag := scalar * vec.magnitude;
ELSE
% := dummy_gri || direction(vec.direction_ratios);
= scalar;
END_IF;
IF (mag < 0.0) THEN
REPEAT i := 1 TO SIZEOF(v.direction_ratios);
v.direction_ratios[i] := -v.direction_ratios][il;
END_REPEAT,
mag = -mag;
END_IF;
result := dummy_gri || vector(normalise(v), mag);
END_IF;
RETURN (result);
END_FUNCTION;

(*

Argument definitions

scalar: (input) A real number to participate in the product.
vec: (input) A vector or direction which is to be multiplied.

result: (output) Avector which is the product o$calarandvec

4.6.16 vector_sum

This function returns the sum of the input arguments. The function returns as a vector the vector sum
of the two input ‘vectors’. For this purposhrections are treated as unit vectors. The input arguments
must both be of the same dimensionality but may be eiirections orvectors. Where both arguments
arevectors, they must be expressed in the same units. A zero sum vector produeerof zero
magnitude in the direction @frgl. If both input arguments amdirections, the result is unitless.

NOTE 1- This function does not provide geometric founding fontbetor returned, the caller of the the
function is responsible for ensuring that it is used irepresentation with a geometric_representation_-
context

EXPRESS specification

%)
FUNCTION vector_sum(argl, arg2 : vector_or_direction) : vector;
LOCAL
result . vector;

res, vecl, vec?2 : direction;
mag, magl, mag2 : REAL;
ndim . INTEGER;

158 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_LOCAL;

IF ((NOT EXISTS (argl)) OR (NOT EXISTS (arg2))) OR (argl.dim <> arg2.dim)
THEN
RETURN (?) ;

ELSE
BEGIN
IF 'GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF(argl) THEN
magl := argl.magnitude;
vecl := argl.orientation;

ELSE
magl := 1.0;
vecl = argl,;
END_IF;

IF 'GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF(arg2) THEN
mag2 := arg2.magnitude;
vec2 := arg2.orientation;

ELSE
mag2 = 1.0;
vec2 = argz;
END_IF;

vecl := normalise (vecl);

vec2 = normalise (vec2);

ndim := SIZEOF(vecl.direction_ratios);

mag = 0.0;

res := dummy_gri || direction(vecl.direction_ratios);
REPEAT i ;== 1 TO ndim;

res.direction_ratios[i] := magl*vecl.direction_ratios[i] +
mag2*vec?2.direction_ratios]i];
mag = mag + (res.direction_ratios[i]*res.direction_ratios][i]);
END_REPEAT,
IF (mag > 0.0) THEN
result := dummy_gri || vector(res, SQRT(mag));
ELSE
result := dummy_gri || vector(vecl, 0.0);
END_IF;
END;
END_IF;
RETURN (result);
END_FUNCTION;

(*

Argument definitions

argl: (input) A vector or direction defining the first operand in vector sum operation.
arg2: (input) A vector or direction defining the second operand for vector sum operation.

result: (output) Avector which is the vector sum afrgl andarg2.

(©ISO 2000 — All rights reserved 159

ISO 10303-42:2000(E)

4.6.17 vector_difference

This function returns the difference of the input argumentsaagl(— arg2). The function returns as a
vector the vector difference of the two input ‘vectors’. For this purpdgections are treated as unit
vectors. The input arguments shall both be of the same dimensionality but may bedeitcéons

or vectors. If both input arguments argectors, they must be expressed in the same units; if both are
directions, a unitless result is produced. A zero difference vector produgestar of zero magnitude

in the direction ofargl.
NOTE 1- This function does not provide geometric founding fontbetor returned, the caller of the the

function is responsible for ensuring that it is used irepresentation with a geometric_representation_-
context

EXPRESS specification

)
FUNCTION vector_difference(argl, arg2 : vector_or_direction) : vector;
LOCAL
result . vector;

res, vecl, vec2 : direction;

mag, magl, mag2 : REAL;

ndim . INTEGER;
END_LOCAL;

IF ((NOT EXISTS (argl)) OR (NOT EXISTS (arg2))) OR (argl.dim <> arg2.dim)
THEN
RETURN (?) ;
ELSE
BEGIN
IF 'GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF(argl) THEN
magl := argl.magnitude;
vecl := argl.orientation;

ELSE
magl := 1.0;
vecl = argl,;
END_IF;

IF 'GEOMETRY_SCHEMA.VECTOR’ IN TYPEOF(arg2) THEN
mag2 := arg2.magnitude;
vec2 := arg2.orientation;

ELSE
mag2 = 1.0;
vec2 = argz;
END_IF;

vecl := normalise (vecl);

vec2 = normalise (vec2);

ndim := SIZEOF(vecl.direction_ratios);

mag = 0.0;

res := dummy_gri || direction(vecl.direction_ratios);
REPEAT i ;== 1 TO ndim;

160 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

res.direction_ratios[i] := magl*vecl.direction_ratios[i] +
mag2*vec?2.direction_ratios]i];
mag = mag + (res.direction_ratios[i]*res.direction_ratios][i]);
END_REPEAT,
IF (mag > 0.0) THEN
result := dummy_gri || vector(res, SQRT(mag));
ELSE
result := dummy_gri || vector(vecl, 0.0);
END_IF;
END;
END_IF;
RETURN (result);
END_FUNCTION;

(*

Argument definitions

argl: (input) A vector or direction defining first operand in the vector difference operation.
arg2: (input) A vector or direction defining the second operand for vector difference.

result: (output) Avector which is the vector difference afrgl andarg?2.

4.6.18 default_b_spline_knot_mult

This function returns the integer list of knot multiplicities, depending on the type of knot vector, for the
B-spline parametrisation.

EXPRESS specification

)
FUNCTION default_b_spline_knot_mult(degree, up_knots : INTEGER,;
uniform : knot_type)

© LIST [2:?] OF INTEGER;
LOCAL

knot_mult : LIST [l:up_knots] OF INTEGER;
END_LOCAL;

IF uniform = uniform_knots THEN
knot_mult := [1:up_knots];
ELSE
IF uniform = quasi_uniform_knots THEN
knot_mult := [1:up_knots];
knot_mult[1] := degree + 1,
knot_multfup_knots] := degree + 1,
ELSE
IF uniform = piecewise_bezier_knots THEN

(©ISO 2000 — All rights reserved 161

ISO 10303-42:2000(E)

knot_mult := [degree:up_knots];
knot_mult[1] := degree + 1,
knot_multfup_knots] := degree + 1,
ELSE
knot_mult := [O:up_knots];
END_IF;
END_IF;
END_IF;
RETURN(knot_mult);
END_FUNCTION;

(*

Argument definitions

degree: (input) An integer defining the degree of the B-spline basis functions.
up_knots: (input) An integer which gives the number of knot multiplicities required.
uniform: (input) The type of basis function for which knot multiplicities are required.

knot_mult: (output) A list of integer knot multiplicities.

4.6.19 default_b_spline_knots

This function returns the knot vector, depending onkhet_type, for a B-spline parametrisation.

EXPRESS specification

)
FUNCTION default_b_spline_knots(degree,up_knots : INTEGER;
uniform : knot_type)
. LIST [2:?] OF parameter_value;

LOCAL

knots : LIST [l:up_knots] OF parameter value := [0:up_knots];

ishift : INTEGER := 1;
END_LOCAL;

IF (uniform = uniform_knots) THEN
ishift := degree + 1;

END _if;
IF (uniform = uniform_knots) OR
(uniform = quasi_uniform_knots) OR
(uniform = piecewise_bezier_knots) THEN
REPEAT i := 1 TO up_knots;
knots[i] := i - ishift;
END_REPEAT,
END_IF;

162 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

RETURN(knots);
END_FUNCTION;

(*

Argument definitions

degree: (input) An integer defining the degree of the B-spline basis functions.
up_knots: (input) An integer which gives the number of knot values required.
uniform: (input) The type of basis function for which knots are required.

knots: (output) A list of parameter values for the knots.

4.6.20 default_b_spline_curve weights

This function returnsip_cp weights equal to 1.0 in an array of real.

EXPRESS specification

*)
FUNCTION default_b_spline_curve_weights(up_cp : INTEGER)
: ARRAY [O:up_cp] OF REAL;
RETURN([1:up_cp + 1]);
END_FUNCTION;

(*

Argument definitions

up_cp: (input) An integer defining the upper index on the array of the B-spline curve weights required.

weights: (output) A real array of weight values.

NOTE - This function is not used in this part of ISO 10303 but is defined here for use by applications.

4.6.21 default_b_spline_surface_weights

This function returns weights equal to 1.0 in an array of array of real.

EXPRESS specification

)

(©ISO 2000 — All rights reserved 163

ISO 10303-42:2000(E)

FUNCTION default_b_spline_surface_weights(u_upper, v_upper: INTEGER)
: ARRAY [O:u_upper] OF
ARRAY [O:v_upper] OF REAL;
RETURN([[1:v_upper + 1]:u_upper +1]);
END_FUNCTION;
(*

Argument definitions

u_upper: (input) An integer defining the upper index on the array of the B-spline surface weights re-
quired in theu direction.

v_upper: (input) An integer giving the upper index of the number of weights required for the surface in
thev parameter direction.

weights: (output) A real array of array of weight values.

NOTE - This function is not used in this part of ISO 10303 but is defined here for use by applications.

4.6.22 constraints_param_b_spline

This function checks the parametrisation of a B-spline curve or (one of the directions of) a B-spline
surface and returns TRUE if no inconsistencies are found.

These constraints are:

a) Degree> 1.

b) Upperindex on knots 2.

c) Upperindex on control points degree.

d) Sum of knot multiplicities = degree + (upper index on control points) + 2.
e) For the first and last knot the multiplicity is bounded by 1 and (degree+1).
f) For all other knots the knot multiplicity is bounded by 1 and degree.

g) The consecutive knots are increasing in value.

EXPRESS specification

)
FUNCTION constraints_param_b_spline(degree, up_knots, up_cp : INTEGER;
knot_ mult : LIST OF INTEGER;

164 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

knots : LIST OF parameter_value) : BOOLEAN;
LOCAL
result : BOOLEAN := TRUE;
k, sum : INTEGER;
END_LOCAL;

(* Find sum of knot multiplicities. *)
sum := knot_mult[1];

REPEAT i := 2 TO up_knots;
sum := sum + knot_mult[i];
END_REPEAT,

(* Check limits holding for all B-spline parametrisations *)
IF (degree < 1) OR (up_knots < 2) OR (up_cp < degree) OR
(sum <> (degree + up_cp + 2)) THEN
result := FALSE;
RETURN(result);
END_IF;

k := knot_mult[1];

IF (k < 1) OR (k > degree + 1) THEN
result := FALSE;

RETURN(result);
END_IF;
REPEAT i := 2 TO up_knots;

IF (knot_mult[i] < 1) OR (knots[i] <= knots[i-1]) THEN
result := FALSE;
RETURN(result);

END_IF;

k := knot_mult[i];

IF (i < up_knots) AND (k > degree) THEN
result := FALSE;
RETURN(result);

END_IF;

IF (i = up_knots) AND (k > degree + 1) THEN
result := FALSE;
RETURN(result);
END_IF;
END_REPEAT,
RETURN(result);
END_FUNCTION;

(*

(©ISO 2000 — All rights reserved 165

ISO 10303-42:2000(E)

Argument definitions

degree: (input) An integer defining the degree of the B-spline basis functions.
up_knots: (input) An integer giving the upper index of the list of knot multiplicities.

up_cp: (input) An integer which is the upper index of the control points for the curve or surface being
checked for consistency of its parameter values.

knot_mult: (input) The list of knot multiplicities.

4.6.23 curve_weights_positive

This function checks the weights associated with the control points of a
rational_b_spline_curveand returns TRUE if they are all positive.

EXPRESS specification

*)
FUNCTION curve_weights_positive(b: rational_b_spline_curve) : BOOLEAN;

LOCAL
result : BOOLEAN := TRUE;
END_LOCAL;
REPEAT i := 0 TO b.upper_index_on_control_points;

IF b.weights[i] <= 0.0 THEN
result := FALSE;
RETURN(result);

END_IF;

END_REPEAT,
RETURN(result);
END_FUNCTION;

(*

Argument definitions

b: (input) A rational B-spline curve for which the weight values are to be tested.

4.6.24 constraints_composite_curve_on_surface

This function checks that the curves referenced by the segments obitiggosite_curve_on_surface
are all curves on surface, including themposite_curve_on_surfacgéype, which is admissible as a
bounded_curve

166 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*
)
FUNCTION constraints_composite_curve_on_surface
(c: composite_curve_on_surface) : BOOLEAN;
LOCAL
n_segments : INTEGER := SIZEOF(c.segments);
END_LOCAL;

REPEAT k := 1 TO n_segments;
IF (NOT(GEOMETRY_SCHEMA.PCURVE’ IN
TYPEOF(c\composite_curve.segments[k].parent_curve))) AND
(NOT(GEOMETRY_SCHEMA.SURFACE_CURVE’ IN
TYPEOF(c\composite_curve.segments[k].parent_curve))) AND
(NOT(GEOMETRY_SCHEMA.COMPOSITE_CURVE_ON_SURFACE’ IN
TYPEOF(c\composite_curve.segments[k].parent_curve))) THEN
RETURN (FALSE);
END_IF;
END_REPEAT,
RETURN(TRUE);
END_FUNCTION;

(*

Argument definitions

c: (input) A composite curve on surface to be verified.

4.6.25 get_basis_surface

This function returns the basis surface for a curve as a a sairédces. For a curve which is not a
curve_on_surfacean empty set is returned.

EXPRESS specification

)
FUNCTION get_basis_surface (c : curve_on_surface) : SET[0:2] OF surface;
LOCAL
surfs : SET[0:2] OF surface;
n . INTEGER,;
END_LOCAL;
surfs = [];
IF 'GEOMETRY_SCHEMA.PCURVE' IN TYPEOF (c) THEN
surfs := [c\pcurve.basis_surface];
ELSE
IF 'GEOMETRY_SCHEMA.SURFACE_CURVE’ IN TYPEOF (c) THEN
n := SIZEOF(c\surface_curve.associated_geometry);

(©ISO 2000 — All rights reserved 167

ISO 10303-42:2000(E)

REPEAT i := 1 TO n;
surfs = surfs +
associated_surface(c\surface_curve.associated_geometry]i]);
END_REPEAT,
END_IF;
END_IF;
IF 'GEOMETRY_SCHEMA.COMPOSITE_CURVE_ON_SURFACE’ IN TYPEOF (c) THEN
(* For a composite_curve_on_surface the basis_surface is the intersection
of the basis_surfaces of all the segments. *)
n := SIZEOF(c\composite_curve.segments);
surfs := get_basis_surface(
c\composite_curve.segments[1].parent_curve);
IF n>1 THEN
REPEAT i :== 2 TO n;
surfs = surfs * get_basis_surface(
c\composite_curve.segmentsfi].parent_curve);
END_REPEAT,
END_IF;

END_IF;

RETURN(surfs);
END_FUNCTION;
(*

Argument definitions

c: (input) A curve for which théasis_surfacds to be determined.

surfs: (output) The set containing thmasis_surfaceor surfaces on whichlies.

4.6.26 surface_weights_positive

This function checks the weights associated with the control pointsatfanal_b_spline_surfaceand
returns TRUE if they are all positive.

EXPRESS specification

)
FUNCTION surface_weights_positive(b: rational_b_spline_surface) : BOOLEAN;
LOCAL

result : BOOLEAN := TRUE;
END_LOCAL;
REPEAT i := 0 TO b.u_upper;
REPEAT j := 0 TO b.v_upper;

IF (b.weights[i][j] <= 0.0) THEN
result := FALSE;
RETURN(result);

168 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_IF;
END_REPEAT,
END_REPEAT,
RETURN(result);
END_FUNCTION;

(*

Argument definitions

b: (input) A rational B-spline surface for which the weight values are to be tested.

4.6.27 volume_weights_positive

This function checks the weights associated with the control pointsaifa@al_b_spline_volumeand
returns TRUE if they are all positive.

EXPRESS specification

)
FUNCTION volume_weights_positive(b: rational_b_spline_volume): BOOLEAN;

LOCAL
result : BOOLEAN := TRUE;
END_LOCAL;
REPEAT i := 0 TO b.u_upper;
REPEAT j := 0 TO b.v_upper;

REPEAT k := 0 TO b.w_upper;

IF (b.weights[i][j][k] <= 0.0) THEN
result := FALSE;
RETURN(result);

END_IF;

END_REPEAT,
END_REPEAT,
END_REPEAT,
RETURN(result);
END_FUNCTION;

(*

Argument definitions

b: (input) Arational_b_spline_volumefor which the weight values are to be tested.

(©ISO 2000 — All rights reserved 169

ISO 10303-42:2000(E)

4.6.28 constraints_rectangular_composite_surface

This functions checks the following constraints on the attributes of a rectangular composite surface:
— that the component surfaces are all either rectangular trimmed surfaces or B-spline surfaces;
— that thetransition attributes of the segments array do not contain the value

discontinuousexcept for the last row or column, where they indicate that the surface is not closed
in the appropriate direction.

EXPRESS specification

)
FUNCTION constraints_rectangular_composite_surface
(s : rectangular_composite_surface) : BOOLEAN;

(* Check the surface types *)
REPEAT i := 1 TO s.n_u;
REPEAT j := 1 TO s.n_v;
IF NOT ((GEOMETRY_SCHEMA.B_SPLINE_SURFACE’ IN TYPEOF
(s.segments]i][j].parent_surface)) OR
(GEOMETRY_SCHEMA.RECTANGULAR_TRIMMED_SURFACE’ IN TYPEOF
(s.segments]i][j].parent_surface))) THEN
RETURN(FALSE);
END_IF;
END_REPEAT,
END_REPEAT,

(* Check the transition codes, omitting the last row or column *)
REPEAT i := 1 TO s.n_u-1;
REPEAT j .= 1 TO s.n_v;
IF s.segmentsi][j].u_transition = discontinuous THEN
RETURN(FALSE);
END_IF;
END_REPEAT,
END_REPEAT,

REPEAT i := 1 TO s.n_u;
REPEAT j := 1 TO s.n_v-1,;
IF s.segments]i][j].v_transition = discontinuous THEN
RETURN(FALSE);
END_IF;
END_REPEAT,;
END_REPEAT,;
RETURN(TRUE);
END_FUNCTION;

(*

170 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Argument definitions

s: (input) A rectangular composite surface to be verified.

4.6.29 list to_array

The functionlist_to_array converts a generic list to an array with pre-determined array bounds. If the
array bounds are incompatible with the number of elements in the original list, a null result is returned.
This function is used to construct the arrays of control points and weights used in the b-spline entities.

EXPRESS specification

*)
FUNCTION list_to_array(lis : LIST [0:?] OF GENERIC : T;
low,u : INTEGER) : ARRAY OF GENERIC : T;
LOCAL
n . INTEGER,;
res : ARRAY [low:u] OF GENERIC : T;
END_LOCAL;

n := SIZEOFK(lis);
IF (n <> (u-low +1)) THEN
RETURN(?);
ELSE
res := [lis[1] : n];
REPEAT i .= 2 TO n;
res[low+i-1] := lis[i];
END_REPEAT,
RETURN(res);
END_IF;
END_FUNCTION;
(*

Argument definitions

lis: (input) A list to be converted.
low: (input) An integer specifying the required lower index of the output array.
u: (input) An integer value for the upper index.

res: (output) The array generated from the input data.

(©ISO 2000 — All rights reserved 171

ISO 10303-42:2000(E)

4.6.30 make_array of array

The functionmake_array_of array builds an array of arrays from a list of lists. The function first
checks that the specified array dimensions are compatible with the sizes of the lists, and in particular,
verifies that all the sub-lists contain the same number of elements. A null result is returned if the input
data is incompatible with the dimensions. This function is used to construct the arrays of control points
and weights for a B-spline surface.

EXPRESS specification

*)
FUNCTION make_array_of array(lis : LIST[1:?] OF LIST [1:?] OF GENERIC : T,
lowl, ul, low2, u2 : INTEGER):
ARRAY OF ARRAY OF GENERIC : T;

LOCAL
res : ARRAY[lowl:ul] OF ARRAY [low2:u2] OF GENERIC : T;
END_LOCAL;

(* Check input dimensions for consistency *)
IF (ul-lowl+1l) <> SIZEOF(lis) THEN

RETURN (?);
END_IF;
IF (u2 - low2 + 1) <> SIZEOF(lis[1]) THEN
RETURN (?) ;
END_IF;
(* Initialise res with values from lis[1] *)
res := [list_to_array(lis[1], low2, u2) : (ul-lowl + 1)];
REPEAT i := 2 TO HIINDEX(lis);
IF (u2-low2+1) <> SIZEOF(lis[i]) THEN
RETURN (?);
END_IF;
res[lowl+i-1] := list_to_array(lis[i], low2, u2);
END_REPEAT,

RETURN (res);
END_FUNCTION;

(*

Argument definitions

lis: (input) A list of list to be converted.
lowl: (input) An integer specifying the required lower index of the first output array.
ul: (input) Aninteger value for the upper index of the first output array.

low2: (input) An integer specifying the required lower index of the second output array.

172 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

u2: (input) An integer value for the upper index of the second output array.

res: (output) The array of array with specified dimensions generated from the input data after verifying
consistency.

4.6.31 make_array of array_of array

The functionmake_array_of _array_of array builds an array of arrays of arrays from a list of lists

of lists. The function first checks that the specified array dimensions are compatible with the sizes of
the lists, and in particular, verifies that all the sub-lists contain the correct numbers of elements. An
indeterminate result is returned if the input data is incompatible with the dimensions. This function is
used to construct the arrays of control points and weights for a B-spline volume.

EXPRESS specification

*)
FUNCTION make_array_of array_of array(lis : LIST[1:?] OF
LIST [1:?] OF LIST [1:?] OF GENERIC : T;
lowl, ul, low2, u2, low3, u3 : INTEGER):
ARRAY OF ARRAY OF ARRAY OF GENERIC : T;

LOCAL
res : ARRAY[lowl:ul] OF ARRAY [low2:u2] OF
ARRAY[low3:u3] OF GENERIC : T;
END_LOCAL;

(* Check input dimensions for consistency *)
IF (ul-lowl+1l) <> SIZEOF(lis) THEN

RETURN (?);
END_IF;
IF (u2-low2+1) <> SIZEOF(lis[1]) THEN

RETURN (?);
END_IF;

(* Initialise res with values from lis[1] *)

res := [make_array_of array(lis[1], low2, u2, low3, u3) : (ul-lowl + 1)];
REPEAT i := 2 TO HIINDEX(lis);

IF (u2-low2+1) <> SIZEOFK(lis[i]) THEN

RETURN (?);

END_IF;

res[lowl+i-1] := make_array_of_array(lis[i], low2, u2, low3, u3);
END_REPEAT,

RETURN (res);
END_FUNCTION;

(*

(©ISO 2000 — All rights reserved 173

ISO 10303-42:2000(E)

Argument definitions

lis: (input) A list of list of list to be converted.

lowl: (input) An integer specifying the required lower index of the first output array.
ul: (input) An integer value for the upper index of the first output array.

low2: (input) An integer specifying the required lower index of the second output array.
u2: (input) An integer value for the upper index of the second output array.

low3: (input) An integer specifying the required lower index of the third output array.
u3: (input) An integer value for the upper index of the third output array.

res: (output) The array of array of array with specified dimensions generated from the input data after
verifying consistency.

4.6.32 above plane

This function tests whether, or not, focartesian_point are coplanar. If the input arguments are two-
dimensional an indeterminate result is returned. The function returns a zero value if the input arguments
are coplanar. If the points are not coplanar the function returns the distance the fourth point is above
the plane of the first 3 point$f, P, Ps), a negative result indicates that the fourth point is below this
plane. Above is defined to be the side from which the the 16pB, P; appears in counter-clockwise
order.

EXPRESS specification

%)
FUNCTION above plane(pl, p2, p3, p4 : cartesian_point) : REAL;
LOCAL
dir2, dir3, dir4 : direction :=
dummy_gri || direction([1.0, 0.0, 0.0]);
val, mag . REAL;
END_LOCAL;

IF (pl.dim <> 3) THEN
RETURN(?);

END_IF;

REPEAT i := 1 TO 3;
dir2.direction_ratios[i] := p2.coordinates[i] - pl.coordinatesi];
dir3.direction_ratios[i] := p3.coordinates[i] - pl.coordinatesi];
dird.direction_ratios[i] := p4.coordinates[i] - pl.coordinatesi];
mag := dird.direction_ratios[i]*dir4.direction_ratiosi];

END_REPEAT,

mag := sqrt(mag);

val := mag*dot_product(dir4, cross_product(dir2, dir3).orientation);

RETURN(val);

174 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_FUNCTION,;
(*

Argument definitions

pl: (input) The firstcartesian_pointto be tested as a member of a coplanar set.
p2: (input) The secondartesian_pointto be tested as a member of a coplanar set.
p3: (input) The thirdcartesian_pointto be tested as a member of a coplanar set.
p4: (input) The fourthcartesian_pointto be tested as a member of a coplanar set.

val: (output) The result of the coplanar test, if zero the foartesian_point are coplanar, otherwise
the sign ofvalueindicates if p4 is above (positive), or below (negative) the plane of p1, p2, and p3.

4.6.33 same_side

This function tests whether, or not, a list of 2 or more test points are on the same side of plane defined
by three given points. If the input arguments are two-dimensional an indeterminate result is returned.
The function returns TRUE if thist_pointsall lie on the same side of the plane definedotgne_pts

FALSE indicates that theest_pointsare not all on the same side of this plane.

EXPRESS specification

%)
FUNCTION same_side(plane_pts : LIST [3:3] of cartesian_point;
test_points : LIST [2:?] of cartesian_point) : BOOLEAN;

LOCAL

vall, val2 : REAL;

n . INTEGER,;
END_LOCAL,;

IF (plane_pts[1].dim = 2) OR (test_points[1].dim = 2) THEN
RETURN(?);
END_IF;
n := SIZEOF(test_points);
vall := above_plane(plane_pts[1], plane_pts[2], plane_pts[3],
test_points[1]);
REPEAT i .= 2 TO n;
val2 := above_plane(plane_pts[1], plane_pts[2], plane_pts[3],
test_points[i]);
IF (vall*val2 <= 0.0) THEN
RETURN(FALSE);
END_IF;
END_REPEAT,
RETURN(TRUE);
END_FUNCTION;

(©ISO 2000 — All rights reserved 175

ISO 10303-42:2000(E)

(*

Argument definitions

plane_pts: (input) The LIST of 3cartesian_points defining the plane used in the test.

test_points: (input) The LIST ofcartesian_point to be tested for the property of lying on the same
side of the plane.

result: (output) The result of the test, if TRUE all thiest_pointsare on the same side of the plane; if
FALSE one or more of these points lies in the plane or on the wrong side of the plane.

EXPRESS specification

*)
END_SCHEMA; -- end GEOMETRY schema
(*

176 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

5 Topology

The following EXPRESS declaration begins thpology_schema and identifies the necessary ex-
ternal references.

EXPRESS specification

*)
SCHEMA topology _schema;
REFERENCE FROM geometry schema;
REFERENCE FROM representation_schema(representation_item);

(*

NOTE 1- The schemas referenced above can be found in the following Parts of ISO 10303:

geometry_schema Clause 4 of this part of ISO 10303
representation_schema ISO 10303-43

NOTE 2 - See annex D, Figures D.14-D.16, for a graphical presentation of this schema.

51 Introduction

The topology resource model has its basis in boundary representation solid modelling but can be used in
any other application where an explicit method is required to represent connectivity.

5.2 Fundamental concepts and assumptions

The topological entitiesyertex, edgeetc., specified here have been defined independently of any use
that may be made of them. Minimal constraints have been placed on d#tghnéth the intention that

any additional constraints will be specified by the using entity or by a defined context in which the entity
is used. The intent is to avoid limiting the context or the use made of the entities.

The topological entities have been defined in a hierarchical manner witrettex being the primitive
entity. That is, all other topological entities are defined either directly or indirectly in terms of vertices.

Each entity has its own set of constraints. A higher-level entity may impose constraints on a lower-level
entity. At the higher level, the constraints on the lower-level entity are the sum of the constraints im-
posed by each ¢ity in the chain between the higher- and lower-level entities. The basic topological
structures in order of increasing complexity aextex, edge path, loop, face andshell. In addition

to the high-level structured topological entitiggen_shellandclosed_shellwhich are specialised sub-
types ofconnected_face_setthe topology section includes tle®nnected_edge_sednd the general
connected_face_sefThese two entities are designed for the communication of collections of topologi-
cal data where the constraints applied to shell are inappropriate.

(©ISO 2000 — All rights reserved 177

ISO 10303-42:2000(E)

Thepoly_loopis a loop with straight and coplanar edges and is defined as an ordered list of points. The
poly_loopentity is used for the communication afdeted B-rep models.

Many functions ensure consistency of the topology models by applying topological and geometric con-
straints to entities.

52.1 Geometric associations

Many of the topological entities have a specialised subtype which enables them to be associated with
geometric data. This association will be essential when communicating boundary representation solid
models. The specialised subtypesveftex, edgeandface arevertex_point, edge_curve andface_-
surfacerespectively. For thedge_curveandface_surfacethe relationship between the geometric sense

and the topological sense of the associated entities is also recorded. The key concept relating geometry
to topology is the domain. The domain opaint, curve, or surfaceis just that point, curve, or surface.

The domain of arertex, edge or faceis the corresponding point, curve or surface. The domainad@a

or path is the union of the domains of all the vertices and edges itothygor path. (Except in the case

of a vertex loop, this is a curve.) The domain of a shell is the union of the domains of all the vertices,
edges, and faces in the shell. (Farlased_shelbr open_shell this is a surface.) The domain of a solid

model is the region of space it occupies. The domain of a set or list is the union of the domains of the
elements of that set or list. Wherever in this standard a geometrical concept such as connectedness or
finiteness is discussed in relation to an entity, it is understood that the concept applies to the domain of
that entity.

A key concept in describing domains is the idea of a manifold. Intuitively, a domaid-imanifold if it

is locally indistinguishable frond-dimensional Euclidean space. This means that the dimenijosa

the same at each mathematical point, and self- intersections are prohibited. As defined in this standard,
curves and surfaces may contain self-intersections, and hence need not be manifolds. However, the part
of a curve or surface that corresponds to the domain of a topological entity such as an edge or face shall
be a manifold.

As used in this standard, the terms “manifold”, “boundary”, and “ manifold with boundary” are identical

to the usual mathematical definitions. A manifold with boundary differs from a manifold in that the
boundary is allowed, but not required, to be non-empty.

A 1-manifold is a non-self-intersecting curve which does not include either of its end points. Examples
of 1-manifolds are the real line and the unit circle. A “Y"-shaped figure is not a 1-manifold, and neither is
the closed unitinterval. A 2-manifold is a non-self-intersecting surface which does not include boundary
curves. Examples of 2-manifolds include the unit sphere and the ope#i(disk 0) : 22 + y* < 1}.

The closed disK (z, y,0) : % + y* < 1} is not a manifold. The domains of edges and paths, if present,
are 1-manifolds. The domains of faces and closed shells, if present, are 2-manifolds.

Any curve which does not self-intersect is a 1-manifold with boundary. The closed disk, 0) :

2?2 + y? < 1} is a 2-manifold with boundary. The domain of an open shell, if present, is a 2-manifold
with boundary. The domain of a manifold solid boundary representation or a faceted manifold boundary
representation is a 3-manifold with boundary.

178 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

The boundary of al-manifold with boundary is &d — 1)-manifold. For example, the boundary of

a curve is the set of 0, 1, or 2 end points contained in that curve. The boundary of the closed disk
{(x,y,0) : 224 y? < 1} is the unit circle. The boundary of the domain of an open shell is the domain of
the set of loops that bound holes in the shell. The boundary of a manifold solid boundary representation
or a faceted manifold boundary representation is the domain of the set of bounding shells.

Curves and surfaces which are manifolds with boundary are classified as either open or closed. The terms
“open” and “closed”, when applied to curves or surfaces in this standard, should not be confused with the
notions of “open set” or “closed set” from point set topology. The term “closed surface” is identical to the
usual definition of a closed, connected, orientable 2-manifold. Examples of a closed surface are a sphere
and a torus. The domain of a closed shell, if present, is a closed surface. Examples of open surfaces are
an infinite plane, or a surface with one or more holes. The domain of an open shell, if present, is an open
surface.

All closed surfaces that are physically manufacturable are orientable. Face domains, because they are
always embeddable in the plane, are orientable. Open surfaces need not be orientable. For example, the
M0Obius strip is an open surface. Also, some manifolds are neither open nor closed as defined in this
standard. The Klein bottle is an example. It is finite and its boundary is empty, but the surface is not
orientable, and hence does not divide space into two regions. However, the domain of an open shell as
defined in this standard must be orientable.

The term “genus” refers to an integer-valued function used to classify topological properties of an entity.
This standard defines two different types of genus.

For an entity which can be described as a graph of edges and vertices, for example a loop, path, or
wire shell, genus is equivalent to the standard technical term “cycle rank” in graph theorynat is
equivalent to the standard usage of the term “genus” in graph theory. Intuitively, it measures the number
of independent cycles in a graph. For example, a graph with exactly one vertex, joined to itself by
self-loops, has genus

The genus of a closed surfadeis the number of handles that must be added to a sphere to produce a
surface homeomorphic t&. For example, the genus of a sphere is 0, and the genus of a torus is 1. This
is identical to the standard technical term “genus of a surface” from algebraic topology. Adding a handle
to a closed surface is the operation that corresponds to drilling a tunnel through the three-dimensional
volume bounded by that surface. This can be viewed #nguout two disks and connecting their
boundaries with a cylindrical tube. Handles should not be confused with holes. As used in this standard,
the term “hole” corresponds to the intuitive notion of punching a hole in a two-dimensional surface.

The surface genus definition is extended to orientable opeacgsfas follows. Fill in every hole in the

domain with a disk. The resulting surface is a closedasgf for which genus is already defined. Use
this number for the genus of the open surface.

5.2.2 Associations with parameter space geometry

A fundamental assumption in this clause is that the topology being defined is that of model space. The
geometry of curves and points can also be defined in parameter space but, in general, the topological

(©ISO 2000 — All rights reserved 179

ISO 10303-42:2000(E)

structure of, for example face will not be the same in the parametric space of the underlying surface
as itis in model space.

Parametric space modelling systems differ from real space systems in the methodology used to associate
geometry to topology. Parametric space modelling systems typically associate a different parametric
space curve with each edge use (iozignted_edgé. Every one of the parametric space curves associ-

ated with a given edge (by way of an edge use) describe the same point set in real space. The parametric
space curves are defined in different parametric spaces. The parametric spaces are the surfaces which
underlay the faces bordering on the edge. In a manifold solid the geometry ofelgeig define twice,

once for each of the twfaces which border on thatdge

Associating a parametric space curve with each edge use extends naturally to the use of degenerate edges
(i.e., edges with zero length in real space). For example, a parametric spadéngajestem could

represent a face that is triangular in real space as a square in parametric space. A straight forward way to
do this is to represent one of the triangular face’s vertices as a degenerate edge (but having two vertices);
then there is a one-to-one mapping between edges in real space and model space. The degenerate edge
has zero length in real space, but greater than zero length in parametric space. Degenerate edges also
may be used for creating bounds around singularities such as the apex of a cone.

Real space modelling systems do not associate parametric space curveackitttlge use nor do they

allow degenerate edges. Since the parametric space modelling systems treatment of topology is an im-
plementation convenience, this standard requires the use of real space topology. The parametric space
modelling system’s unique information requirements are satisfied using techniques at the geometric level.

5.2.2.1 Edge_curve associations with parametric space curves.

Techniques that can be used to associate parametric space curves edtfeacurveare:

a) Theedge_geometnattribute of anedge_curvemay reference directly ongcurve, then only one
pcurve is associated with thadge_curve

b) Theedge_geometryattribute of anedge_curvecan reference aurface_curve or a subtype of
surface_curve then associated with thatlge_curveare thepcurves (one or two) referenced by
the associated_geometnattribute of thesurface_curve The curve referenced by tleairve_3d
attribute of thesurface_curveis also associated with thexlge_curvebut that curve cannot be a
parametric space curve and represents the model space geometrgdd¢he

c¢) Theedge_geometnattribute of anedge_curvecan reference a curve (nofpaurve), then associ-
ated with theedge_curveare thepcurves (zero or more) referenced by thssociated_geometry
attribute of everysurface_curvewhosecurve_3d attribute references the same curve (i.e., is in-
stance equal to, :=:) as tleelge_geometnattribute of theedge_curve

These techniques are formally defined in EXPRESS as the furexige_curve_pcurvesvhich can be
used to determine all the parametric space curves associated with a paetilgdar

180 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

NOTE 1- For applications where the real space modelling systems are not required to understand paramet-
ric space curves, the parametric space modelling systems should be required to use only the third technique

described above. Then, even if fheurves are ignored, the real space modelling system will have the correct
geometry associated with @tige_curve.

NOTE 2 - Given thepcurves of anedge_curve determining whichoriented_edgea pcurve shall be as-
sociated with is a matter of matching (:=:) thasis_surfaceof the pcurve with the face_geometryof the
face bound by thabriented_edge If two or morepcurves are associated with the samége curveand
are defined in the parametric space of the same surface, determining avigicted_edgethe pcurve is
associated with requires checking connectivity ofgherves in parametric space.

5.2.3 Graphs, cycles, and traversals

A connected component of a graph is a connected subset of the graph which is not contained in any

larger connected subset. We denotelMythe multiplicity of a graph, that is, the number of connected
components. Thus, a graph is connected if and only i 1.

Each component of a graph can be completely traversed, starting and ending at the same vertex, such
that every edge is traversed exactly twice, once in each direction, and every vertex is “passed through”
the same number of times as there are edges using the vertex. If an (edge + edge traversal direction) is
considered as a unit, each unique (edge + direction) combination shall occur once and only once in the
traversal of a graph. During the traversal of a graph it will be found that there are one or more sets of

alternating vertices and (edge + direction) units that form closed cycles.

The symbolG will denote thegraph genuswhich is, intuitively, the number of independent cycles
in the graph. (Technicallyy is the rank of the fundamental group of the graph.)

Every graph satisfies the following Euler equation
(V-&-(M-G)=0 1)

where) and¢ are the numbers of unique vertices and edges in the graph.

NOTE - The followinggraph traversablgorithm, [8], may be used to traverse a graph and compuéad
G.

a) SetM andd to zero.

b) Start at any (unvisited) vertex. If there is no unvisited vertex, STOP. Mark the vertésitesl Incre-
mentM . Traverse any edge at the vertex, marking the edge with the travel direction.

c) After traversing an edgB() to reach the verte), do the following:

— When reaching a vertex for the first time, mark the edge just travelled adthent edgef the
vertex. The advent edge is marked so that it can only be selected once in this direction.

— Mark the vertex agisited

— Ifthisis the first traversal of the edge and the veriekas previously been visited, incremént

(©ISO 2000 — All rights reserved 181

ISO 10303-42:2000(E)

— Select an exit edge from the vertex according to the following rules:

1) No edge may be selected that has previously been traversed in the direction away from the
vertexq.

2) Select any edge, except the advent edge,ahat meets rule (c1).
3) If no edge meets rule (c2), select the advent edge.
— Traverse the selected exit edge and mark it with the travel direction.

d) If noedge was selected in the previous step, go to step b, else go to step c.
5.3 Topology constant and type definitions

5.3.1 dummy_tri

The constandummy _tri is a partial entity definition to be used when typesogfological_representa-
tion_item are constructed. It provides the correct supertypes andaime attribute as an empty string.

EXPRESS specification

*
)
CONSTANT
dummy_tri : topological_representation_item := representation_item(”)||
topological_representation_item();
END_CONSTANT;

(*

532 shell

This type collects together, for reference when constructing more complex models, the subtypes which
have the characteristics of a shell.shellis a connected object of fixed dimensionality= 0, 1, or 2,
typically used to bound a region. The domain of a shell, if present, includes its bountis@Bd< oc.

A shell of dimensionality) is represented by a graph consisting of a single vertex. The vertex shall not
have any associated edges.

A shell of dimensionalityl is represented by a connected graph of dimensionality
A shell of dimensionality is a topological entity constructed by joiningdes along edges. Its domain,

if present, is a connected, orientable 2-manifold with boundary, that is, a connected, oriented, finite,
non-self-intersecting surface, which may be closed or open.

182 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*

)

TYPE shell = SELECT
(vertex_shell,
wire_shell,
open_shell,
closed_shell);

END_TYPE;

(*

5.3.3 reversible_topology_item

This select type specifies all the topological representation items which can participate in the operation
of reversing their orientation. This type is used by the functionditional_reverse

EXPRESS specification

)
TYPE reversible_topology_item = SELECT

(edge,
path,
face,
face_bound,
closed_shell,
open_shell);
END_TYPE;
(*
534 list_ of reversible topology item

This special type defines a list of reversible topology items; it is used by the function
list_of topology_reversed

EXPRESS specification

%)
TYPE list_of reversible topology item =

LIST [0:?] of reversible topology item;
END_TYPE;

(*

(©ISO 2000 — All rights reserved 183

ISO 10303-42:2000(E)

5.3.5 set_of reversible topology item

This special type defines a set of reversible topology items; it is used by the function
set_of_topology_reversed

EXPRESS specification

%)
TYPE set_of reversible_topology_item =

SET [0:?] of reversible_topology_item;
END_TYPE;

(*
5.3.6 reversible_topology
This select type identifies all types of reversible topology items; it is used by the furiopotogy_-

reversed

EXPRESS specification

*

)

TYPE reversible_topology = SELECT
(reversible_topology_item,
list_of reversible_topology_item,
set_of_reversible_topology_item);

END_TYPE;

(*
54 Topology entity definitions

This clause contains all the entity definitions used in the topology schema.

54.1 topological_representation_item

A topological_representation_itemrepresents the topology, or connectivity, of entities which make
up the representation of an object. Tiopological_representation_itemis the supertype for all the
representation items in the topology schema.

NOTE 1- As subtypes ofepresentation_itemthere is an implicit and/or relationship betwegeomet-
ric_representation_itemandtopological_representation_item The only complex instances intended to be
created aredge_curve face_surface, angertex_point.

184 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

NOTE 2 - The definition ofopological_representation_itendefines an and/or relationship betwéeop
andpath. The only valid complex instance is tiedge_loopentity.

EXPRESS specification

*
)
ENTITY topological_representation_item
SUPERTYPE OF (ONEOF(vertex, edge, face_bound, face, vertex_shell,
wire_shell, connected_edge_set, connected_face_set,
(loop ANDOR path)))
SUBTYPE OF (representation_item);
END_ENTITY;

(*

Informal propositions

IP1: For eachtopological_representation_item consider the set ofertex_points,

edge_curve, andface_surface that are referenced, either directly or recursively, from that
topological_representation_item (Do not include in this set oriented edges or faces, but do include the
non-oriented edges and faces on which they are based.) Then no two distinct elements in this set shall
have domains that intersect.

54.2 vertex

A vertex is the topological construct corresponding to a point. It has dimensionality 0 and extent O.
The domain of a vertex, if present, is a point in m dimensional real sg&cehis is represented by the
vertex_point subtype.

EXPRESS specification

)
ENTITY vertex

SUBTYPE OF (topological_representation_item);
END_ENTITY;

(*

Informal propositions

IP1: Thevertex has dimensionality 0. This is a fundamental property of the vertex.

IP2: The extent of avertex is defined to be zero.

(©ISO 2000 — All rights reserved 185

ISO 10303-42:2000(E)

54.3 vertex_point

A vertex point is a vertex which has its geometry defined as a point.

EXPRESS specification

*

)

ENTITY vertex_point

SUBTYPE OF(vertex,geometric_representation_item);
vertex_geometry : point;

END_ENTITY;

(*

Attribute definitions

vertex_geometry: The geometric point which defines the position in geometric space of the vertex.

Informal propositions

IP1: The domain of the vertex is formally defined to be the domain oféttex_geometry

544 edge

An edgeis the topological construct corresponding to the connection between two vertices. More ab-
stractly, it may stand for a logical relationship between the two vertices. The domain of an edge, if
present, is a finite, non-self-intersecting open curvg’ih that is, a connectettdimensional manifold.

The bounds of aedgeare two vertices, which need not be distinct. The edge is oriented by choosing
its traversal direction to run from the first to the second vertex. If the two vertices are the same, the edge
is a self-loop. The domain of the edge does not include its bounds) an& < oo. Associated with

an edge may be a geometdarve to locate the edge in a coordinate space; this is represented by the
edge curvesubtype. The curve shall be finite and non-self-intersecting within the domain of the edge.
An edgeis a graph, so its multiplicity/ and graph genus® may be determined by the graph traversal
algorithm. SinceVl = £ = 1, the Euler equation (1) reduces in this case to

V-(2-G°)=0 2
whereV = 1 or2, andG¢ =1 or 0.
Specifically, the topological edge defining data shall satisfy:
— An edge has two vertices,

[EV]] =2

186 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

— The vertices need not be distinct,
L<[E{V} <2

— Equation 2 shall hold
[E{V}|-2+G =0

edge_geometry
\ edge_end

\——— edge_stort

Figure 20 — Edge curve

EXPRESS specification

%)

ENTITY edge
SUPERTYPE OF(ONEOF(edge_curve, oriented_edge, subedge))
SUBTYPE OF (topological_representation_item);
edge_start : vertex;

edge_end . vertex;
END_ENTITY;
(*
Attribute definitions

edge_start: Start point yertex) of theedge

edge_end: End point gertex) of theedge The sameertex can be used for botdge_startandedge_-
end.

(©ISO 2000 — All rights reserved 187

ISO 10303-42:2000(E)

Informal propositions

IP1: Theedgehas dimensionality 1.

IP2: The extent of aredgeshall be finite and nonzero.

54.5 edge_curve

An edge_curveis a special subtype of edge which has its geometry fully defined. The geometry is
defined by associating the edge with a curve which may be unbounded. As the topological and geometric
directions may be opposed, an indicatsarfe_senges used to identify whether the edge and curve
directions agree or are opposed. The Boolean value indicates whetleemrtleedirection agrees with
(TRUE) or is in the opposite direction (FALSE) to thdgedirection. Any geometry associated with the
vertices of the edge shall be consistent with the edge geometry. Multiple edges can reference the same
curve.

EXPRESS specification

*

)

ENTITY edge_curve
SUBTYPE OF(edge,geometric_representation_item);
edge_geometry : curve;
same_sense . BOOLEAN,;

END_ENTITY;

(*

Attribute definitions

edge_geometry: The curve which defines the shape and spatial location of the edge. This curve may be
unbounded and is implicitly timmed by the vertices of the edge; this defines the edge domain.

same_senseThis logical flag indicates whether (TRUE), or not (FALSE) the senses adbeand the
curve defining the edge geometry are the same. The sense of an edge is from the edge start vertex to the
edge end vertex; the sense of a curve is in the direction of increasing parameter.

NOTE - See Figure 20 for illustration of attributes.

Informal propositions

IP1: The domain of theedge_curveis formally defined to be the domain of iexige_geometryas
trimmed by the vertices. This domain does not include the vertices.

IP2: An edge_curvehas non-zero finite extent.

188 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

IP3: An edge_curves a manifold.

IP4: An edge_curves arcwise connected.

IP5: The edge start is not part of the edge domain.
IP6: The edge end is not part of the edge domain.

IP7: Vertex geometry shall be consistent with edge geometry.

5.4.6 oriented_edge

An oriented_edgeis an edge constructed from anothexdgeand contains a BOOLEAN orientation
flag to indicate whether or not the orientation of the construetigke agrees with the orientation of
the originaledge Except for possible re-orientation, tlegiented_edgeis equivalent to the original
edge

NOTE - A common practice in solid modelling systems is to have an entity that represents the “use” or
“traversal” of anedge This “use” entity explicitly represents the requirement in a manifold solidehah

edge must be traversed exactly twice, once in each direction. The “use” furitficsprovided by theedge
subtypeoriented_edge

EXPRESS specification

*
)
ENTITY oriented_edge
SUBTYPE OF (edge);
edge_element : edge;
orientation : BOOLEAN;
DERIVE
SELF\edge.edge_start : vertex := boolean_choose (SELF.orientation,
SELF.edge_element.edge_start,
SELF.edge_element.edge_end);
SELF\edge.edge_end : vertex := boolean_choose (SELF.orientation,
SELF.edge_element.edge_end,
SELF.edge_element.edge_start);
WHERE
WR1: NOT ('TOPOLOGY_SCHEMA.ORIENTED EDGE’' IN TYPEOF (SELF.edge_element));
END_ENTITY;

(*

Attribute definitions

edge_element: edgentity used to construct thigiented_edge

orientation: BOOLEAN. If TRUE, the topological orientation as used coincides with the orientation,
from start vertex to end vertex, of tleelge_element

(©ISO 2000 — All rights reserved 189

ISO 10303-42:2000(E)

edge_start: The start vertex of the oriented edge. This is derived from the vertices efitiee element
after taking account of therientation

edge_end: The end vertex of the oriented edge. This is derived from the vertices efdte_element
after taking account of therientation

Formal propositions

WR1: Theedge_elemenshall not be amriented_edge

5.4.7 seam_edge

A seam_edgeés a type oforiented_edgewhich, additionally, identifies a correspondipgurve. A
seam_edgés always related to aadge_curvehaving aseam_curveasedge_geometry Theseam_-
edgeidentifies which, of the twgcurves defining theseam_curve is appropriate for thigriented_-
edge

NOTE - The inheritecbrientation attribute refers to the relationship to tedge _elementind not to the
sense of the@curve.

EXPRESS specification

*
)
ENTITY seam_edge
SUBTYPE OF (oriented_edge);
pcurve_reference : pcurve ;
WHERE
WR1 : ('TOPOLOGY_SCHEMA.EDGE_CURVE' IN TYPEOF (edge_element)) AND
(TOPOLOGY_SCHEMA.SEAM_CURVE' IN TYPEOF
(edge_element\edge_curve.edge_geometry)) ;
WR2 : pcurve_reference IN edge_element\edge_curve.edge_geometry\
surface_curve.associated_geometry ;
END_ENTITY;

(*

Attribute definitions

pcurve_reference: Thepcurve associated with the current orientation of gdge_element

Formal propositions

WR1: Theedge_elemenattribute of this type of oriented edge shall bgemm_curve

190 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

WR2: Thepcurve_referenceshall be one of thpcurvesin theassociated_geometriist of theedge_ -
element

5.4.8 subedge

A subedgeis an edge whose domain is a connected portion of the domain of an exddtieg
The topological constraints onsaibedgeare the same as those onexdge

EXPRESS specification

)

ENTITY subedge
SUBTYPE OF (edge);
parent_edge . edge;

END_ENTITY;

(*

Attribute definitions

parent_edge: Theedge or subedge which contains theubedge

Informal propositions

IP1: The domain of thesubedgeis formally defined to be the domain of tparent_edge as trimmed
by thesubedge.start_vertexandsubedge.end_vertex

IP2: Thestart_vertex andend_vertexshall be within the union of the domains of the vertices of the
parent_edgeand the domain of thparent_edge

54.9 path

A path is a topological entity consisting of an ordered collectionriénted_edgs, such thatthedge_-

start vertex of each edge coincides with thége_endof its predecessor. The path is ordered from the
edge_startof its first oriented_edgeto theedge_endof its lastoriented_edge The BOOLEAN value
orientation in the oriented edge indicates whether the edge direction agrees with the direction of the
path (TRUE) or is in the opposite direction (FALSE).

An individualedgecan only be referenced once by an individpath.

An edgecan be referenced by multippaths. Anedgecan exist independently ofath.

(©ISO 2000 — All rights reserved 191

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY path
SUPERTYPE OF (ONEOF(open_path, edge_loop, oriented_path))
SUBTYPE OF (topological_representation_item);
edge_list : LIST [1:?] OF UNIQUE oriented_edge;
WHERE
WR1: path_head_to_tail(SELF);
END_ENTITY;
(*

Attribute definitions

edge_list: List of oriented_edgeentities which are concatenated together to formphif.

Formal propositions

WR1: The end vertex of eaatriented_edgeshall be the same as the start vertex of its successor.

Informal propositions

IP1: A path has dimensionality 1.

IP2: A path is arcwise connected.

IP3: The edges of the path do not intersect except at common vertices.
IP4: A path has a finite, non-zero extent.

IP5: No path shall include two oriented edges with the same edge element and the same orientation.

5.4.10 oriented_path

An oriented_pathis apath constructed from anotheath and contains a BOOLEAN orientation flag to
indicate whether or not the orientation of the construgiatth agrees with the orientation of the original
path. Except for perhaps orientation, tbdented_pathis equivalent to the othqrath.

EXPRESS specification

%)

ENTITY oriented_path
SUBTYPE OF (path);
path_element : path;

192 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

orientation : BOOLEAN;
DERIVE

SELF\path.edge_list : LIST [1:?] OF UNIQUE oriented_edge

:= conditional_reverse(SELF.orientation,
SELF.path_element.edge_list);

WHERE

WR1: NOT ('TOPOLOGY_SCHEMA.ORIENTED_PATH' IN TYPEOF (SELF.path_element));
END_ENTITY;

(*

Attribute definitions

path_element: pathentity used to construct thigiented_path.

orientation: BOOLEAN. If TRUE, the topological orientation as used coincides with the orientation of
thepath_element

edge_list: The list of oriented_edges which form theoriented_path. This list is derived from the
path_elementafter taking account of therientation attribute.

Formal propositions

WR1: Thepath_elementshall not be amriented_path.

5411 open_path
An open_pathis a special subtype gfath such that a traversal of the path visits each of its vertices

exactly once. In particular, the start vertex and end vertex are differenbp&n_pathis a graph for
which M = 1 andG? = 0, so the Euler equation (1) reduces in this case to

V-&-1=0 3)

where) and& are the number of unique vertices and edges in the path. Specifically, the topological
attributes of gath shall meet the following constraints:

— The edges in the Path are unique,
(P)[E]= (P){E}

— Inthelist((P)[E])[V], two vertices appear once only and every other vertex appears exactly twice.
— The graph genus of the path is zero.
— Equation (3) is interpreted as

[((PYLEDIVE] = [(PH{E} = 1=0

(©ISO 2000 — All rights reserved 193

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY open_path
SUBTYPE OF (path);
DERIVE
ne : INTEGER := SIZEOF(SELF\path.edge_list);
WHERE
WR1: (SELF\path.edge_list[1].edge_element.edge_start) :<>:
(SELF\path.edge_list[ne].edge_element.edge_end);
END_ENTITY;

(*

Attribute definitions

ne: The number of elements in the edge list of the path supertype.

Formal propositions

WR1: The start vertex of the first edge shall not coincide with the end vertex of the last edge.

Informal propositions

IP1: An open_pathuvisits itsvertexs exactly once. This implies that if a list of vertices is constructed
from the edge data the first and last vertex will occur once in this list and all other vertices will occur
twice.

5.4.12 loop

A loop is a topological entity constructed from a single vertex, or by stringing together connected (ori-
ented) edges, or linear segments beginning and ending at the same vertex. A loop has dimerisionality
or 1. The domain of a O-dimensional loop is a single point. The domain of a 1-dimensional loop is a
connected, oriented curve, but need not be a manifold. As the loop is a cycle, the location of its begin-
ning/ending pointis arbitrary. The domain of the loop includes its bounds) ahtE < oc.

Aloop is represented by a single vertex, or by an ordered collectiorig@fted_edgs, or by an ordered
collection of points.

194 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

A loop is a graph, s/ and the graph genus! may be determined by the graph traversal algorithm.
SinceM = 1, the Euler equation (1) reduces in this case to

V-&)-1-6H=0 (4)

whereV and& are the number of unique vertices and oriented edges in the loof'aisd¢he genus of
the loop.

EXPRESS specification

)
ENTITY loop
SUPERTYPE OF (ONEOF(vertex_loop, edge loop, poly_loop))
SUBTYPE OF (topological_representation_item);
END_ENTITY;

(*

Informal propositions

IP1: A loop has a finite, or, in the case of thrertex_loop, zero extent.

IP2: A loop describes a closed (topological) curve with coincident start and end vertices.

5.4.13 vertex_loop

A vertex_loopis aloop of zero genus consisting of a singlertex. A vertex can exist independently of
avertex_loop The topological data shall satisfy the following constraint:

— Equation (4) (see 5.4.12) shall be satisfied

[(LH{VI-1=0

EXPRESS specification

*

)

ENTITY vertex_loop
SUBTYPE OF (loop);
loop_vertex : vertex;

END_ENTITY;

(*

(©ISO 2000 — All rights reserved 195

ISO 10303-42:2000(E)

Attribute definitions

loop_vertex: Thevertex which defines the entileop.

Informal propositions

IP1: A vertex_loophas zero extent and dimensionality.

IP2: Thevertex_loophas genus 0.

5.4.14 edge_loop

An edge_loops aloop with nonzero extent. It is path in which the start and end vertices are the same.
Its domain, if present, is a closed curve. Aaige_loopmay overlap itself.

EXPRESS specification

)
ENTITY edge_loop

SUBTYPE OF (loop,path);
DERIVE

ne : INTEGER := SIZEOF(SELF\path.edge_list);
WHERE

WR1: (SELF\path.edge_list[1].edge_start) :=:

(SELF\path.edge_list[ne].edge_end);

END_ENTITY;
(*

Attribute definitions

ne: The number of elements in the edge list of the path supertype.

Formal propositions

WR1: The start vertex of the first edge shall be the same as the end vertex of the last edge. This ensures
that the path is closed to form a loop.

Informal propositions

IP1: The Euler formula (see equation (4)) shall be satisfied:

196 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

(number of vertices} genus— (number of edges) = 1;
IP2: No edgemay be referenced more than once by the sadge_loopwith the samerientation.

5.4.15 poly_loop

A poly_loopis a loop with straight edges bounding a planar region in spaqaol loopis aloop of

genus 1 where the loop is represented by an ordered coplanar collechomts forming the vertices

of the loop. The loop is composed of straight line segments joining a point in the collection to the
succeeding pointin the collection. The closing segment is from the last to the first point in the collection.
The direction of the loop is in the direction of the line segments. Unliketiyee_loopentity, the edges

of thepoly_loopare implicitly defined by th@olygon points.

NOTE 1- This entity exists primarily to facilitate the efficient communicationazietedooundary repre-
sentation models.

A poly_loopshall conform to the following topological constraints:
— The loop has a genus of one.

— Equation (4) (see 5.4.12) shall be satisfied
[(LHVE = (D) ES] =0

EXPRESS specification

*
)
ENTITY poly_loop
SUBTYPE OF (loop,geometric_representation_item);
polygon : LIST [3:?] OF UNIQUE cartesian_point;
END_ENTITY;

(*

Attribute definitions

polygon: List of points defining the loop. There are no repeapsints in the list.

Informal propositions

IP1: All the points in thepolygondefining thepoly_loopshall be coplanar.

IP2: The implicit edges of theoly_loop shall not intersect each other. The implicit edges are the
straight lines joining consecutiymints in thepolygon.

(©ISO 2000 — All rights reserved 197

ISO 10303-42:2000(E)

NOTE 2 - The polyloop has vertices andented_edges which are implicitly created. If, for example, A

and B are consecutive points in thelygonlist, there is an implicibriented_edgefrom vertex point A to

vertex point B with orientation value TRUE. It is assumed that when the higher level entities such as shell
and B-rep require checks on edge usage that this check will recognise, for example, a straight oriented edge
from point B to point A with orientation TRUE as equal to an oriented edge from A to B with orientation
FALSE.

5.4.16 face_bound

A face_boundis a loop which is intended to be used for bounding a face.

EXPRESS specification

)
ENTITY face_bound
SUBTYPE OF(topological_representation_item);

bound . loop;
orientation : BOOLEAN;
END_ENTITY;
(*
Attribute definitions

bound: The loop which will be used as a face boundary.

orientation: This indicates whether (TRUE), or not (FALSE) the loop has the same sense when used to
bound the face as when first definedotfentation is FALSE, the senses of all its component oriented
edges are implicitly reversed when used in thed.

5.4.17 face_outer _bound

A face_outer_boundis a special subtype ¢dice_boundwhich carries the additional semantics of defin-
ing an outer boundary on the face.fdce_outer_boundshall separate the interior of tli@ce from the
exterior and shall enclose the interior domain offdae2 No more than one boundary ofaceshall be

of this type.

EXAMPLE 1 Anyedge_loopon a plane surface may be used to defifecae_outer_boundprovided it is
not enclosed in any other loop in tfece

EXAMPLE 2 A circular loop on aylindrical_surface cannot define dé&ace_outer_boundsince it does
not enclose a closed domain in the surface.

198 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

)

ENTITY face_outer_bound
SUBTYPE OF (face_bound);
END_ENTITY;

(*

54.18 face

A faceis a topological entity of dimensionalit¥ corresponding to the intuitive notion of a piece of
surface bounded by loops. Its domain, if present, is an oriented, connected, finite 2-mani&idAn

face domain shall not have handles, but it may have holes, each hole bounded by a loop. The domain
of the underlying geometry of the face, if present, does not contain its bounds, an& < oco. A

face is represented by its bounding loops, which are definéacasbound. A face shall have at least

one bound, and the bounds shall be distinct and shall not intersecto@mie optionally distinguished,

using theface_outer_boundsubtype, as the “outer” loop of the face. If so, it establishes a preferred way

of embedding the face domain in the plane, in which the other bounding loops of the face are “inside”
the outer loop. Because the face domain is arcwise connected, no inner loop shall contain any other loop.
This is true regardless of which embedding in the plane is chosen.

A geometric surface may be associated with the face. This may be doneitexhiough theface_-
surface subtype, or implicitly if the &ces are defined Ipyoly_loops. In the latter case, the surface is
the plane containing the points of tpely_loops. In either case, a topological nornmals associated

with the face, such that the cross produck t points toward the interior of the face, whetrés the
tangent to a bounding loop. That is, each loop runs counter-clockwise around the face when viewed
from above, if we consider the normalto point up. Each loop is associated througfaee_bound
entity with a BOOLEAN flag to signify whether the loop direction is oriented correctly with respect to
the face normal (TRUE) or should be reversed (FALSE). For a face of the sutatypesurface the
topological normal n is defined from the normal of the underlying surface, together with the BOOLEAN
attributesame_sensend this in turn, determines on which side of the loop the face interior lies, using
the cross-product rule described above.

When avertex_loopis used as d#ace_boundthe sense of the topological normal is derived from any
other bounding loops, or, in the case ofage_surface from theface_geometryand thesame_sense
flag. If theface has only one bound and this is of typertex_loop then the interior of théaceis the
domain of theface_surface.face_geometryln such a case the underlying surface shall be closed (e.g.
aspherical_surface)

The situation is different for a face on an implicit planar surface, such as one defirpaybyoops,

which has no unique surface normal. Since the face and its bounding loops lie in a plane, the outer loop
can always be found without ambiguity. Since the face is required to be finite, the face interior must
lie inside the outer loop, and outside each of the remaining loops. Thesgicoadtiogether with the
specified loop orientations, define the topological normal n using the cross-product rule described above.
All poly_looporientations for a given face shall produce the same value.for

(©ISO 2000 — All rights reserved 199

ISO 10303-42:2000(E)

The edges and vertices referenced by the loops of a face form a graph, of which the individual loops are
the connected components. The Euler equation (1) for this graph becomes:

L
(V=& - (L= (G))=0 (5)
=1
whereG! is the graph genus of théh loop.

More specifically, the following topological constraints shall be met:

— The loops are unique

(ENL} = (1)[L]
— Inthelist((#)[L])[£] an individual edge occurs no more than twice.

— Eachoriented_edgeshall be unique

() LDLEY = (F)[L)[E]

— Equation (5) shall be satisfied

(((OLDHEDIVH A+ (OL DV = O EY = (B[+ 36" =0

EXPRESS specification

)
ENTITY face
SUPERTYPE OF(ONEOF(face_surface, subface, oriented_face))
SUBTYPE OF (topological_representation_item);
bounds : SET[1:?] OF face_bound;
WHERE
WR1: NOT (mixed_loop_type set(list_to_set(list_face loops(SELF))));
WR2: SIZEOF(QUERY(temp <* bounds | 'TOPOLOGY_SCHEMA.FACE_OUTER_BOUND’ IN
TYPEOF(temp))) <= 1,
END_ENTITY;

(*

Attribute definitions

bounds: Boundaries of théace no more than one of these shall bfaee_outer_bound

NOTE - For some types of closed or partially closed surfaces, it may not be possible to identify a unique
outer bound.

200 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Formal propositions

WR1: If any loop of the face is a poly loop, all loops of the face shall be poly loops.

WR2: At most, one of thdaoundsshall be of typdace_outer_bound.

Informal propositions

IP1: No edge shall be referenced by the face more than twice, or more than once in the same direction.
IP2: Distinctface_bound of theface shall have no common vertices.
IP3: If geometry is present, distinct loops of the same face shall not intersect.

IP4: The face shall satisfy the Euler equation (see equation (5)):
(number of vertices)- (number of edges) (number of loops} (sum of genus for loops) = 0.

IP5: Eachloop referred to inboundsshall be unique.

5.4.19 face_surface

A face_surfaceis a subtype of face in which the geometry is defined by an associated surface. The
portion of the surface used by the face shall be embeddable in the plane as an open disk, possibly with
holes. However, the union of the face with the edges and vertices of its bounding loops need not be
embeddable in the plane. It may, for example, cover an entire sphere or torus. As both a face and a
geometric surface have defined normal directions, a BOOLEAN flag (the orientation attribute) is used
to indicate whether the surface normal agrees with (TRUE) or is opposed to (FALSE) the face normal
direction. The geometry associated with any component of the loops of the face shall be consistent with
the surface geometry, in the sense that the domains of all the vertex points and edge curves are contained
in the face geometry surface. Airfacemay be referenced by more than daee_surface

EXPRESS specification

*
)
ENTITY face_surface
SUBTYPE OF(face,geometric_representation_item);
face_geometry : surface;
same_sense . BOOLEAN;
WHERE
WR1: NOT (GEOMETRY_SCHEMA.ORIENTED_SURFACE’ IN TYPEOF(face_geometry));
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 201

ISO 10303-42:2000(E)

Attribute definitions

face_geometry: The surface which defines the internal shape of the face. This surface may be un-
bounded. The domain of the face is defined by this surface and the bounding loops in the inherited
attributeSELF\face.bounds

same_senseThis flag indicates whether the sense of the surface normal agrees with (TRUE), or opposes
(FALSE), the sense of the topological normal to thee

Formal propositions

WR1: An oriented_surfaceshall not be used to define thece_geometry

Informal propositions

IP1: The domain of théace_surfaceis formally defined to be the domain of its
face_geometryas trimmed by the loops, this domain does not include the bounding loops.

IP2: A face_surfacehas nonzero finite extent.
IP3: A face surfaces a manifold.

IP4. A face_surfaceis arcwise connected.

IP5: A face_surfacehas surface genus 0.

IP6: The loops are not part of the face domain.

IP7: Loop geometry shall be consistent with face geometry. This implies thaedgg curve or
vertex_points used in defining the loops bounding fhee_surfaceshall lie on thdface_geometry

IP8: The loops of the face shall not intersect.

5.4.20 oriented_face

An oriented_faceis a subtype of face which contains an additional orientation BOOLEAN flag to indi-
cate whether, or not, the sense of the oriented face agrees with its sense as originally defined in the face
element.

EXPRESS specification

*

)

ENTITY oriented_face
SUBTYPE OF (face);
face_element : face;
orientation : BOOLEAN;

DERIVE

202 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

SELF\face.bounds : SET[1:?] OF face_bound
:= conditional_reverse(SELF.orientation,SELF.face_element.bounds);
WHERE
WR1: NOT ('TOPOLOGY_SCHEMA.ORIENTED_FACE’' IN TYPEOF (SELF.face_element));
END_ENTITY;

(*

Attribute definitions

face_element: Facentity used to construct thiwiented_face

orientation: The relationship of the topological orientation of this entity to that of the
face_element If TRUE, the topological orientation as used coincides with the orientation datiee -
element

bounds: The bounds of th@riented_face are derived from those of thiace_elementafter taking
account of the orientation which may reverse the direction of these bounds.

Formal propositions

WR1: Theface_elemenshall not be amriented_face

5421 subface

A subfaceis a portion of the domain of face or anothesubface

The topological constraints onsaibfaceare the same as orface

EXPRESS specification

%)
ENTITY subface
SUBTYPE OF (face);
parent_face . face;
WHERE
WR1: NOT (mixed_loop_type set(list_to_set(list_face loops(SELF)) +
list_to_set(list_face_loops(parent_face))));
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 203

ISO 10303-42:2000(E)

Attribute definitions

parent_face: Theface (or subfacg which contains theubfacebeing defined bysELF\face.bounds

Formal propositions

WR1: The type ofloops in thesubfaceshall match the type dbops in theparent_faceentity.

Informal propositions

IP1: The domain of the subface is formally defined to be the domain of the parent face, as trimmed by
the loops of the subface.

IP2: All loops of the subface shall be contained in the union of the domain of the parent face and the
domains of the parent face’s bounding loops.

5.4.22 connected_face_set

A connected_face_sdb a set offaces such that the domain of the faces together with their bounding
edges and vertices is connected.

EXPRESS specification

*

)

ENTITY connected_face_set
SUPERTYPE OF (ONEOF (closed_shell, open_shell))
SUBTYPE OF (topological_representation_item);
cfs_faces : SET [1:?] OF face;

END_ENTITY;

(*

Attribute definitions

cfs_faces: Set offaces arcwise connected along comnexnfges orvertexs.

Informal propositions

IP1: The union of the domains of tHaces and their boundintpops shall be arcwise connected.

204 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

5.4.23 vertex_shell

A vertex_shellis ashellconsisting of a singlgertex_loop. A vertex_shell_extentshall be unique.
A vertex_loopcan only be used by a singlertex_shell

A vertex_loopcan exist independently ofwertex_shell

EXPRESS specification

*
)
ENTITY vertex_shell
SUBTYPE OF (topological_representation_item);
vertex_shell_extent : vertex_loop;
END_ENTITY;

(*

Attribute definitions

vertex_shell_extent: Singlevertex_loopwhich constitutes the extent of this typedsifell.

Informal propositions

IP1: The extent and dimensionality ofvertex_shellare both zero.

IP2: The genus of aertex_shellis 0.

5.4.24 wire_shell

A wire_shell is a shell of dimensionality 1. A wire shell can be regarded as a graph constructed of
vertices and edges. However, it is not represented directly as a graph, but indirectly, as a set of loops. It
is the union of the vertices and edges of these loops that form the graph. The domain of a wire shell, if
present, is typically not a manifold.

Two restrictions are placed on the structure of a wire shell.

a) The graph as a whole shall be connected.

b) Each edge in the graph shall be referenced exactly twice by the set of loops.

NOTE 1- Two main applications of wire shells are contemplated.

(©ISO 2000 — All rights reserved 205

ISO

10303-42:2000(E)

NOTE 2 - Any connected graph can be written as a single loop obeying condition (b) by using the graph
traversal algorithm. Such a graph may serve as a bound for a region.

NOTE 3- The set of loops referenced by tlagds of a closed shell automatically obeyndition (b), but

need not be connected. However, the faces of a closed shell can alwayslbéded in such a way that their

loops form a connected graph, and hence a wire shell. Thus, wire shells can represent the “one-dimensional
skeleta” of closed shells.

Writing G for the graph genus, and setting the number of connected compaviertsl, the Euler
graph equation (1) becomes:

Mor

(V-8 -01-G")=0 (6)
e specifically, the following topological constraints shall be met:

The loops shall be unique.
(SHL} = (SY)[L]

Each edge shall either be referenced by two loops, or twice by a single loop. That is, in the list
((S™)[L])[F], each edge appears exactly twice.

[(CSDLE] = 2[((ST)LDIEY

Each oriented edge shall be unique.

(S)EDLEY = (S) LD [E]

Equation (6) shall be satisfied.
[(CCSVLDIEDAVH = [((S)LDAE =1+ G¥ =0

EXPRESS specification

*)

ENTITY wire_shell

SUBTYPE OF (topological_representation_item);

wire_shell_extent : SET [1:?] OF loop;
WHERE

WR1: NOT mixed_loop_type_set(wire_shell_extent);
END_ENTITY;

(*

Attribute definitions

wire_shell_extent: List of loops defining theshell.

206

©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Formal propositions

WR1: The loops making up the wire shell shall not be a mixturpaf/ _loops and other loop types.

Informal propositions

IP1: Thewire_shellhas dimensionality 1.

IP2: The extent of thevire_shellis finite and greater than 0.

IP3: Each edge appears precisely twice in the wire shell with opposite orientations.
IP4: The Euler equation shall be satisfied.

IP5: Theloops defining thewire_shell_extentdo not intersect except at commedges orvertexs.

5.4.25 open_shell

An open_shellis a shell of dimensionality2. Its domain, if present, is a finite, connected, oriented,
2-manifold with boundary, but is not a closed surface. It can be thought otksed_shellith one

or more holes punched in it. The domain of an open shell sat&fiess= < oo. An open shell is
functionally more general thanface because its domain can have handles.

The shell is defined by a collection fzfces, which may beriented_faces. The sense of each face, after
taking account of the orientation, shall agree with the shell normal as defined belovari€htation
can be supplied directly as a BOOLEAN attribute of@iented_face or be defaulted to TRUE if the
shell member is éacewithout the orientation attribute.

The following combinatorial restrictions on open shells and geometrical restrictions on their domains

are designed, together with the informal propositions, to ensure that any domain associated with an open
shell is an orientable manifold.

— Each face reference shall be unique.
— An open_shelishall have at least orface

— A givenfacemay exist in more than ongpen_shell

The boundary of an open shell consists of the edges that are referenced only oncéabg theunds
(loops) of its faces, together with all of their vertices. The domain of an open shell, if present, contains
all edges and vertices of its faces.

NOTE - Note that this is slightly different from the definition of a face domain, which includes none of its
bounds. For example, a face domain may exclude an isolated point or line segment. An open shell domain
may not. (See the algorithm for computiigoelow.)

(©ISO 2000 — All rights reserved 207

ISO 10303-42:2000(E)

The surface genus and topological normal of an open shell are those that would be obtained by filling in
the holes in its domain to produce a closed shell. The topological normal can also be derived from the
face normals after taking account of their orientation. The following Euler equation is satisfied by open
shells. It is the most general form of Euler equation for connected, orientable surfaces.

(V—E-L1+2F)—(2-2H-B) =0 (7)

whereV, &, L;, F are, respectively, the numbers of distinct vertices, edges, face bounds, andffases,
the surface genus, atlis the number of holes5 can be determined directly from the graph of edges
and vertices defining the bounds of the face, in the following manner:

— Delete all edges from the graph that are referenced twice by the face bounds of the face.
— Delete all vertices that have no associated edges.
— ComputeB = the genus of the resulting graph.

If known a priori, the surface genug may be used to check equation (7) as an exact equality. Typi-
cally, this will not be the case, so equation (7) or some equivalent formulation shall be used to compute
the genus. Sincél shall be a non-negative integer, this leads to the following inequalitgcassary
condition for well-formed open shells.

V — & — L;+ Bshallbe even and 2 — 2F 8)

Specifically, the following topological constraints shall be met:

— Each face in the shell is unique.
(SOHF} = (5°)[F]

— Each face bound in the shell is unique.

((SOEDLLy = (S FDIL]

— Eachoriented_edgen the shell is unique.

((SOEDILDLES = (SO)FDILDE]

— Inthelist(((S?)[F])[Li])[£] there is at least one edge that only appears once and no edges appear
more than twice; the singleton edges are on the boundary of the shell.

— The Euler condition (8), and equation (7) shall be satisfied.

(S EDLLTDLEDAV]+ ISOEDALI DAV = (SO FDLL S
— [((SO)[F])[Li]| + B is even and< 2 — 2|(S)[F]]

2-2H - B = [(S)FDLLIONIEDIVEH 4 [(((S)EDLLIAV S
—[((CSOEDLLAEH = [((SOEDILA] + 2|(57) [F]]

208 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY open_shell

SUBTYPE OF (connected_face_set);
END_ENTITY;

(*

Attribute definitions

SELF\connected_face_set.cfs_faceThe set ofaces, which may includeriented_faces, which make
up theopen_shell

Informal propositions

IP1: Everyedgeshall be referenced at least once, but no more than twice bfatiee bound of the
faces.

IP2: Eachoriented_edgereference shall be unique.

IP3: Noedgemay be referenced by more than tieces.

IP4: Distinctfaces of the shell do not intersect, but may shedges, or vertices.
IP5: Distinctedges do not intersect, but may share vertices.

IP6: The Euler equation shall be satisfied.

IP7: Theopen_shellshall be an oriented arcwise connected 2-manifold.
IP8: Theopen_shellshall contain at least one hole.

IP9: The topological normal to eadace of the open_shellshall be consistent with the topological
normal to theopen_shell

5.4.26 oriented_open_shell

An oriented_open_shells aopen_shellconstructed from anothepen_shelland contains a BOOLEAN
direction flag to indicate whether or not the orientation of the construgied_shellagrees with the ori-
entation of the originabpen_shell Except for perhaps orientation, tbdented_open_shelis equiva-
lent to the originabpen_shell

EXPRESS specification

*)
ENTITY oriented_open_shell

(©ISO 2000 — All rights reserved 209

ISO 10303-42:2000(E)

SUBTYPE OF (open_shell);

open_shell_element : open_shell,

orientation . BOOLEAN;
DERIVE

SELF\connected_face_set.cfs faces : SET [1:?] OF face

:= conditional_reverse(SELF.orientation,
SELF.open_shell_element.cfs_faces);

WHERE

WR1: NOT ('TOPOLOGY_SCHEMA.ORIENTED_ OPEN_SHELL’

IN TYPEOF (SELF.open_shell_element));

END_ENTITY;

(*

Attribute definitions

open_shell_element:The open shell which defines the faces of dhiented_open_shell

orientation: The relationship between the orientation of thiented_open_shelbeing defined and the
open_shell_elementeferenced.

cfs_faces: The set of faces for theriented_open_shellobtained from those of the
open_shell_elemenafter possibly reversing their orientation.

Formal propositions

WR1: The type ofopen_shell_elemenshall not be amriented_open_shell

5.4.27 closed_shell

A closed_shellis ashell of dimensionality2 which typically serves as a bound for a regionfih. A

closed shell has no boundary, and has non-zero finite extent. If the shell has a domain with coordinate
spacekl?, it divides that space into two connected regions, one finite and the other infinite. In this case,
the topological normal of the shell is defined as being directed from the finite to the infinite region.

The shell is defined by a collection fzfces, which may beriented_faces. The sense of each face, after
taking account of the orientation, shall agree with the shell normal as defined aboveridiftation
can be supplied directly as a BOOLEAN attribute of@iented_face or be defaulted to TRUE if the
shell member is éacewithout the orientation attribute.

The combinatorial restrictions on closed shells and geometrical restrictions on their domains ensure that
any domain associated with a closed shell is a closed, orientable manifold. The domain of a closed shell,
if present, is a connected, closed, oriented 2-manifold. Itis always topologically equivalenttécd

torus for some > 0. The numbetH is referred to as theurface genusf the shell. If a shell of genus

H has a domain with coordinate spae, the finite region of space inside it is topologically equivalent

to a solid ball withH tunnels drilled through it.

210 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

The surface Euler equation (7) applies wih= 0, because in this case there are no holes. As in the
case ofopen_shel$, the surface genug may not be known a priori, but shall be an integef. Thus a
necessary, but not sufficient, condition for a well-formed closed shell is the following:

V — & — L; shall be even andk 2 — 2F 9

Specifically, the following topological constraints shall be satisfied:

— Each face in the shell is unique.
(SHF} = (59 [F]

— Each face bound in the shell is unique

((SOVEDLL} = ((SOEDILA]

— Eachoriented_edgen the shell is unique.

(SOUEDILDLES = (SOFEDILD)[E]

— Each edge in the shell is either used by exactly two face bounds or is used twice by one face bound.

[((SOEDILDLEG] = 2/(((S)EDILDLES]
Thatis, inthe list{((S¢)[F])[L:])[£] each edge appears exactly twice.

— The Euler conditions (9), or optionally (7) shall be satisfied.

2=2H = [(SYEDILIDAEDIVE + [(((S)EDILI AV Y
—[((SOEDILNAET] = [((SOEDIL] + 2(S7) [F]]

[(((CCSOHEDLLIDAEDAVH + [V EDLLI DAV H = [V ED{LHAES
— [((S)[F])[L1]] is even and< 2 — 2|(S°)[F]|

EXPRESS specification

%)
ENTITY closed_shell

SUBTYPE OF (connected_face_set);
END_ENTITY;

(*

Attribute definitions

SELF\connected_face_set.cfs_faceThe set ofaces, includingoriented_faces which define thelosed_-
shell.

(©ISO 2000 — All rights reserved 211

ISO 10303-42:2000(E)

Informal propositions

IP1: Everyedgeshall be referenced exactly twice by taee_bound of the faces.
IP2: Eachoriented_edgereference shall be unique.

IP3: No edgeshall be referenced by more than tfeces.

IP4: Distinctfaces of the shell do not intersect, but may shedges, or vertices.
IP5: Distinctedges do not intersect, but may share vertices.

IP6: Eachfacereference shall be unique.

IP7: Theloops of theshellshall not be a mixture gfoly_loops and othetoop types.
IP8: Theclosed_shelkhall be an oriented arcwise connected-manifold.

IP9: The Euler equation shall be satisfied.

IP10: The topological normal to eadiace of the closed_shelkhall be consistent with the topological
normal to theclosed_shell This implies that the topological normal to edelte, after taking account
of orientation, if present, shall point from the finite region bounded byctbged_shelinto the infinite
region outside.

5.4.28 oriented_closed_shell

An oriented_closed_shelk aclosed_sheltonstructed from anothelosed_sheland contains a BOOLEAN
orientation flag to indicate whether or not the orientation of the constratdsdd_shelhgrees with the
orientation of the originatlosed_shell Theoriented_closed_shelis equivalent to the originalosed_-
shell but may have the opposite orientation.

EXPRESS specification

*
)
ENTITY oriented_closed_shell

SUBTYPE OF (closed_shell);

closed_shell_element : closed_shell;

orientation . BOOLEAN;
DERIVE

SELF\connected_face_set.cfs faces : SET [1:?] OF face

:= conditional_reverse(SELF.orientation,
SELF.closed_shell_element.cfs_faces);

WHERE

WR1: NOT ('TOPOLOGY_SCHEMA.ORIENTED CLOSED_SHELL’

IN TYPEOF (SELF.closed_shell_element));

END_ENTITY;

(*

212 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

closed_shell_elementThe closed shell which defines the faces ofdhiented_closed_shell

orientation: The relationship between the orientation of treented_closed_shelbeing defined and
theclosed_shell_elemeneferenced.

cfs_faces: The set of faces for theriented closed_shellobtained from those of the
closed_shell_elemerdfter possibly reversing their orientation.

Formal propositions

WR1: The type ofclosed_shell_elemerghall not be amriented_closed_shell

5.4.29 connected face sub_set

A connected_face_sub_sé&t aconnected_face_sethose domain is a connected portion of the domain
of an existingconnected_face_setAs a complex subtype an instancecohnected_face_sub_setay
also be of typeopen_shell or, if appropriateclosed_shell The bounding loops of the faces of the
connected_face_sub_sehay referencesubedges. The topological constraints orcannected_face_-
sub_setare the same as on annnected_face set

EXPRESS specification

*
)
ENTITY connected_face sub_set
SUBTYPE OF (connected_face_set);
parent face set : connected face_set;
END_ENTITY;

(*

Attribute definitions

parent_face_set: The connected_face _setwhich contains theonnected_face_sub_setThe par-
ent_face_setmay be of typepen_shellor of typeclosed_shell

Informal propositions

IP1: The domain of theonnected_face_sub_sehall be within the domain of thearent_face_set

(©ISO 2000 — All rights reserved 213

ISO 10303-42:2000(E)

5.4.30 connected _edge_set

A connected_edge_sé$ a set ofedges such that the domain of the edges together with their bounding
vertices is arcwise connected.

EXPRESS specification

*
)
ENTITY connected_edge_set
SUBTYPE OF (topological_representation_item);
ces_edges : SET [1:?] OF edge;
END_ENTITY;
(*

Attribute definitions

ces_edgesSet ofedges arcwise connected at commeoertexs.

Informal propositions

IP1: The dimensionality of theonnected_edge_sés 1.

IP2: The domains of the edges of thennected_edge_sethall not intersect.
5.5 Topology function definitions

55.1 conditional_reverse

Depending on its first argument, this function returns either the input topology unchanged or a copy of
the input topology with its orientation reversed.

EXPRESS specification

*
)
FUNCTION conditional_reverse (p : BOOLEAN;
an_item : reversible_topology)
. reversible_topology;
IF p THEN
RETURN (an_item);
ELSE
RETURN (topology reversed (an_item));
END_IF;

214 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

END_FUNCTION,;
(*

Argument definitions

p: (input) A BOOLEAN value indicating whether or not orientation reversal is required.

an_item: (input) An item of topology which can be reversed if required.

55.2 topology_reversed

This function returns topology equivalent to the input topology except that the orientation is reversed.

EXPRESS specification

)
FUNCTION topology reversed (an_item : reversible_topology)
. reversible_topology;

IF (TOPOLOGY_SCHEMA.EDGE’' IN TYPEOF (an_item)) THEN
RETURN (edge_reversed (an_item));
END_IF;

IF (TOPOLOGY_SCHEMA.PATH' IN TYPEOF (an_item)) THEN
RETURN (path_reversed (an_item));
END_IF;

IF (TOPOLOGY_SCHEMA.FACE_BOUND’ IN TYPEOF (an_item)) THEN
RETURN (face_bound_reversed (an_item));
END_IF;

IF (TOPOLOGY_SCHEMA.FACE' IN TYPEOF (an_item)) THEN
RETURN (face_reversed (an_item));
END_IF;

IF (TOPOLOGY_SCHEMA.SHELL' IN TYPEOF (an_item)) THEN
RETURN (shell_reversed (an_item));
END_IF;

IF (SET’ IN TYPEOF (an_item)) THEN
RETURN (set_of topology reversed (an_item));
END_IF;

IF CLIST' IN TYPEOF (an_item)) THEN

RETURN (list_of topology_reversed (an_item));
END_IF;

(©ISO 2000 — All rights reserved 215

ISO 10303-42:2000(E)

RETURN (?);
END_FUNCTION;
(*

Argument definitions

an_item: (input) An item of reversible topology which is to have its orientation reversed.

item_reversed: (output) Atopological_representation_itemwhich is the result of reversing the orien-
tation ofan_item,

5.5.3 edge_reversed

This function returns anriented_edgeequivalent to the inpue¢dge except that the orientation is re-
versed.

EXPRESS specification

)
FUNCTION edge_reversed (an_edge : edge) : oriented_edge;
LOCAL
the _reverse : oriented_edge;
END_LOCAL;

IF (TOPOLOGY_SCHEMA.ORIENTED_EDGE’ IN TYPEOF (an_edge)) THEN
the_reverse := dummy_tri ||
edge(an_edge.edge_end, an_edge.edge_start) ||
oriented_edge(an_edge\oriented_edge.edge_element,
NOT (an_edge\oriented_edge.orientation)) ;
ELSE
the_reverse = dummy_tri ||
edge(an_edge.edge_end, an_edge.edge_start) ||
oriented_edge(an_edge, FALSE);
END_IF;
RETURN (the_reverse);
END_FUNCTION;

(*

Argument definitions

an_edge: (input) Theedgewhich is to have its orientation reversed.

the_reverse: (output) Theoriented_edgethat is the result of the orientation reversal.

216 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

55.4 path_reversed

This function returns anriented_path equivalent to the inpupath except that the orientation is re-
versed.

EXPRESS specification

)
FUNCTION path_reversed (a_path : path) : oriented_path;
LOCAL
the_reverse : oriented_path ;
END_LOCAL;
IF (TOPOLOGY_SCHEMA.ORIENTED_PATH’ IN TYPEOF (a_path)) THEN
the_reverse := dummy_tri ||
path(list_of topology reversed (a_path.edge_list)) ||
oriented_path(a_path\oriented_path.path_element,
NOT (a_path\oriented_path.orientation)) ;
ELSE
the_reverse := dummy_tri ||
path(list_of topology reversed (a_path.edge_list)) ||
oriented_path(a_path, FALSE);
END_IF;

RETURN (the_reverse);

END_FUNCTION,;
(*

Argument definitions

a_path: (input) Thepath which is to have its orientation reversed.

the_reverse: (output) Theoriented_path which is the result of the orientation reversal.

555 face_bound_reversed

This function returns dace_boundequivalent to the inputace_boundexcept that the orientation is
reversed.

EXPRESS specification

%)
FUNCTION face bound_reversed (a_face bound : face bound) : face_bound,;
LOCAL
the_reverse : face_bound ;

(©ISO 2000 — All rights reserved 217

ISO 10303-42:2000(E)

END_LOCAL;
IF (TOPOLOGY_SCHEMA.FACE_OUTER_BOUND’ IN TYPEOF (a_face_bound)) THEN
the_reverse = dummy_tri ||
face_bound(a_face_bound\face bound.bound,
NOT (a_face_bound\face_bound.orientation))
|| face_outer_bound() ;
ELSE
the_reverse = dummy_tri ||
face_bound(a_face_bound.bound, NOT(a_face bound.orientation));
END_IF;
RETURN (the_reverse);
END_FUNCTION;

(*

Argument definitions

a_face_bound: (input) The face_bound which is to have its orientation reversed.

the_reverse: (output) The result of the orientation reversal.

55.6 face reversed

This function returns aoriented_faceequivalent to inpuface except that the orientation is reversed.

EXPRESS specification

)
FUNCTION face reversed (a_face : face) : oriented_face;
LOCAL
the_reverse : oriented_face ;
END_LOCAL;
IF (TOPOLOGY_SCHEMA.ORIENTED_FACE’ IN TYPEOF (a_face)) THEN
the_reverse = dummy_tri ||
face(set_of topology reversed(a_face.bounds)) ||
oriented_face(a_face\oriented_face.face_element,
NOT (a_face\oriented_face.orientation)) ;
ELSE
the_reverse = dummy_tri ||
face(set_of topology reversed(a_face.bounds)) ||
oriented_face(a_face, FALSE) ;
END_IF;
RETURN (the_reverse);
END_FUNCTION;

(*

218 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Argument definitions

a_face: (input) Thefacewhich is to have its orientation reversed.

the_reverse: (output) Theoriented_facewhich is the result of the orientation reversal.

55.7 shell reversed

This function returns awriented_open_shellor oriented_closed_shelkequivalent to the inpushell
except that the orientation is reversed.

EXPRESS specification

)
FUNCTION shell_reversed (a_shell : shell) : shell;
IF (TOPOLOGY_SCHEMA.OPEN_SHELL' IN TYPEOF (a_shell)) THEN
RETURN (open_shell_reversed (a_shell));
ELSE
IF (TOPOLOGY_SCHEMA.CLOSED_SHELL' IN TYPEOF (a_shell)) THEN
RETURN (closed_shell_reversed (a_shell));
ELSE
RETURN (?);
END_IF;
END_IF;
END_FUNCTION;
(*

Argument definitions

a_shell: (input) The shell which is to have its orientation reversed.

the_reverse: (output) The result of the orientation reversal.

55.8 closed_shell _reversed

This function returns aoriented_closed_shelbr equivalent to the inputlosed_shelexcept that the
orientation is reversed.

EXPRESS specification

%)
FUNCTION closed_shell_reversed (a_shell : closed_shell) :

oriented_closed_shell;
LOCAL

(©ISO 2000 — All rights reserved 219

ISO 10303-42:2000(E)

the_reverse : oriented_closed_shell;
END_LOCAL;
IF (TOPOLOGY_SCHEMA.ORIENTED_CLOSED_SHELL’ IN TYPEOF (a_shell)) THEN
the_reverse := dummy_tri ||
connected_face_set (
a_shell\connected_face_set.cfs_faces) ||
closed_shell () || oriented_closed_shell(
a_shell\oriented_closed_shell.closed_shell _element,
NOT(a_shell\oriented_closed_shell.orientation));
ELSE
the_reverse := dummy_tri ||
connected_face_set (
a_shell\connected_face_set.cfs_faces) ||
closed_shell () || oriented_closed_shell (a_shell, FALSE);
END_IF;
RETURN (the_reverse);
END_FUNCTION;

(*

Argument definitions

a_shell: (input) Theclosed_shelivhich is to have its orientation reversed.

the_reverse: (output) The result of the orientation reversal.

55.9 open_shell reversed

This function returns aoriented_open_shellr equivalent to the inpudpen_shellexcept that the ori-
entation is reversed.

EXPRESS specification

%)
FUNCTION open_shell_reversed (a_shell : open_shell) :
oriented_open_shell;
LOCAL
the_reverse : oriented_open_shell;
END_LOCAL;
IF (TOPOLOGY_SCHEMA.ORIENTED_OPEN_SHELL’ IN TYPEOF (a_shell)) THEN
the_reverse = dummy_tri ||
connected_face_set (
a_shell\connected_face_set.cfs_faces) ||
open_shell () || oriented_open_shell(
a_shell\oriented_open_shell.open_shell_element,
(NOT (a_shell\oriented_open_shell.orientation)));
ELSE
the_reverse = dummy_tri ||

220 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

connected_face_set (
a_shell\connected_face_set.cfs_faces) ||
open_shell () || oriented_open_shell (a_shell, FALSE);
END_IF;
RETURN (the_reverse);
END_FUNCTION;

(*

Argument definitions

a_shell: (input) Theopen_shellwhich is to have its orientation reversed.

the_reverse: (output) The result of the orientation reversal.

5.5.10 set_of topology reversed

This function returns a set of topology equivalent to the input set of topology except that the orientation
of each element of the set is reversed.

EXPRESS specification

*
)
FUNCTION set_of topology reversed (a_set : set of reversible_topology_item)
. set_of reversible_topology_item;
LOCAL
the_reverse : set_of_reversible_topology_item;
END_LOCAL;

the_reverse := [];

REPEAT i := 1 TO SIZEOF (a_set);
the_reverse := the_reverse + topology reversed (a_set [i]);
END_REPEAT,

RETURN (the_reverse);
END_FUNCTION;

(*

Argument definitions

a_set: (input) The set of topology items which are to have their orientation reversed.

the_reverse: (output) The result of the orientation reversal.

(©ISO 2000 — All rights reserved 221

ISO 10303-42:2000(E)

5.5.11 list of topology reversed

This function returns a list of topology equivalent to the input list of topology except that the orientation
of each element of the list is reversed and the order of the elements in the listis reversed.

EXPRESS specification

*
)
FUNCTION list_of topology reversed (a_list
. list_of reversible_topology_item)
. list_of reversible_topology _item;
LOCAL
the_reverse : list_of reversible_topology_item;
END_LOCAL;

the_reverse = [];

REPEAT i := 1 TO SIZEOF (a_list);
the_reverse := topology reversed (a_list [i]) + the_reverse;
END_REPEAT,

RETURN (the_reverse);
END_FUNCTION;

(*

Argument definitions

a_list: (input) The list of topology items which are to have their orientation and list order reversed.

the_reverse: (output) The result of the orientation and order reversal.

55.12 boolean_choose

This function returns one of two choices depending the value of a Boolean input argument. The two
choices are also input arguments.

EXPRESS specification

*)
FUNCTION boolean_choose (b : boolean;
choicel, choice2 : generic : item) : generic : item;

IF b THEN

RETURN (choicel);
ELSE

222 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

RETURN (choice2);
END_IF;
END_FUNCTION;
(*

Argument definitions

b: (input) The Boolean value used to select the element choicel (TRUE) or choice2 (FALSE).
choicel: (input) The first item which may be selected.

choice2: (input) The second item which may be selected.

5.5.13 path_head to tail

This function returns TRUE if for thedges of the inpufpath, the end vertex of eadtdgeis the same as
the start vertex of its successor.

EXPRESS specification

%)
FUNCTION path_head_to_tail(a_path : path) : BOOLEAN;
LOCAL
n : INTEGER;
p : BOOLEAN := TRUE;
END_LOCAL,;

n := SIZEOF (a_path.edge_list);
REPEAT i .= 2 TO n;
p := p AND (a_path.edge_list[i-1].edge_end :=:
a_path.edge_list[i].edge_start);
END_REPEAT,

RETURN (p);

END_FUNCTION,;
(*

Argument definitions

a_path: (input) The path for which it is required to verify that its component edges are arranged con-
secutively head-to-tail.

p: (output) A BOOLEAN variable which is TRUE if akdges in thepath join head-to-tail.

(©ISO 2000 — All rights reserved 223

ISO 10303-42:2000(E)

5.5.14 list face loops

Given aface (or asubface, the function returns the list édops in theface or subface

EXPRESS specification

)
FUNCTION list_face_loops(f: face) : LIST[0:?] OF loop;
LOCAL
loops : LIST[0:?] OF loop := [I;
END_LOCAL;

REPEAT i := 1 TO SIZEOF(f.bounds);
loops := loops +(f.bounds]i].bound);
END_REPEAT,

RETURN(loops);
END_FUNCTION;

(*

Argument definitions

f. (input) Thefacefor which it is required to generate the list of boundiogps.

loops: (output) The list oloops forf.

5.5.15 list loop edges

Given aloop, the function returns the list efdges in theloop.

EXPRESS specification

)
FUNCTION list_loop_edges(l: loop): LIST[0:?] OF edge;

LOCAL
edges : LIST[0:?] OF edge := [];
END_LOCAL;

IF "'TOPOLOGY_SCHEMA.EDGE_LOOP’ IN TYPEOF(I) THEN

REPEAT i := 1 TO SIZEOF(I\path.edge_list);
edges := edges + (l\path.edge_list[i].edge_element);
END_REPEAT,
END_IF;

224 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

RETURN(edges);
END_FUNCTION;

(*

Argument definitions

I: (input) Theloop for which it is required to generate the listedges.

edges: (output) The list ofedges forl.

5.5.16 list_shell _edges

Given ashell, the function returns the list @dges in theshell.

EXPRESS specification

)
FUNCTION list_shell_edges(s : shell) : LIST[0:?] OF edge;
LOCAL
edges : LIST[0:?] OF edge := [];
END_LOCAL;
REPEAT i := 1 TO SIZEOF(list_shell_loops(s));
edges := edges + list_loop_edges(list_shell_loops(s)[i]);
END_REPEAT,
RETURN(edges);

END_FUNCTION,;
(*

Argument definitions

s: (input) Theshellfor which it is required to generate the listedges.

edges: (output) The list ofedges fors.

5.5.17 list_shell faces

Given ashell, the function returns the list déices in theshell.

(©ISO 2000 — All rights reserved 225

ISO 10303-42:2000(E)

EXPRESS specification

)
FUNCTION list_shell_faces(s : shell) : LIST[0:?] OF face;

LOCAL
faces : LIST[0:?] OF face = [];
END_LOCAL;

IF (TOPOLOGY_SCHEMA.CLOSED_SHELL’ IN TYPEOF(s)) OR
(TOPOLOGY_SCHEMA.OPEN_SHELL’ IN TYPEOF(s)) THEN
REPEAT i := 1 TO SIZEOF(s\connected_face_set.cfs_faces);
faces := faces + s\connected_face_set.cfs_facesi];
END_REPEAT,
END_IF;

RETURN(faces);

END_FUNCTION,;
(*

Argument definitions

s: (input) The shell for which it is required to generate the list of faces.

faces: (output) The list of faces fos.

5.5.18 list_shell _loops

Given ashell, the function returns the list ddops in theshell.

EXPRESS specification

*)
FUNCTION list_shell_loops(s : shell) : LIST[0:?] OF loop;
LOCAL
loops : LIST[0:?] OF loop := [I;
END_LOCAL;

IF "'TOPOLOGY_SCHEMA.VERTEX_ SHELL' IN TYPEOF(s) THEN
loops := loops + s.vertex_shell_extent;
END_IF;

IF "'TOPOLOGY_SCHEMA.WIRE_SHELL’ IN TYPEOF(s) THEN

REPEAT i := 1 TO SIZEOF(s.wire_shell_extent);
loops := loops + s.wire_shell_extent][i];
END_REPEAT,
END_IF;

226 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

IF (TOPOLOGY_SCHEMA.OPEN_SHELL’ IN TYPEOF(s)) OR
(TOPOLOGY_SCHEMA.CLOSED_SHELL’ IN TYPEOF(s)) THEN
REPEAT i := 1 TO SIZEOF(s.cfs_faces);
loops := loops + list_face_loops(s.cfs_facesi]);
END_REPEAT,
END_IF;

RETURN(loops);

END_FUNCTION,;
(*

Argument definitions

s: (input) Theshellfor which it is required to generate the listlobps.

loops: (output) The list oloops fors.

5.5.19 mixed_loop_type_set

Given a set ofoops, the function returns TRUE if the setincludes bttty _loopsand other types (edge
and vertex) of loops.

EXPRESS specification

)
FUNCTION mixed_loop_type_set(l: SET[0:?] OF loop): LOGICAL;
LOCAL
poly loop_type: LOGICAL;
END_LOCAL;
IF(SIZEOF(l) <= 1) THEN
RETURN(FALSE);
END_IF;
poly_loop_type := (TOPOLOGY_SCHEMA.POLY_LOOP’ IN TYPEOF(I[1]));
REPEAT i := 2 TO SIZEOF(l);
IF(CTOPOLOGY_SCHEMA.POLY_LOOP’ IN TYPEOF(I[i])) <> poly_loop_type)
THEN
RETURN(TRUE);
END_IF;
END_REPEAT,
RETURN(FALSE);
END_FUNCTION;

(*

(©ISO 2000 — All rights reserved 227

ISO 10303-42:2000(E)

Argument definitions

I: (input) The set ofoops for which it is required to determine whether, or not, it is a mixturpay_-
loops and others.

5.5.20 list to_set

This function creates SET from aLIST, the type of element for th8ET will be the same as that in the
original LIST .

EXPRESS specification

*)
FUNCTION list_to_set(l : LIST [0:?] OF GENERIC:T) : SET OF GENERIC:T;
LOCAL
s : SET OF GENERIC:T := [];
END_LOCAL,;

REPEAT i := 1 TO SIZEOF(l);
s = s + I[i;
END_REPEAT,

RETURN(S);
END_FUNCTION;

(*

Argument definitions

I: (input) The list of elements to be converted to a set.

s: (output) The set correspondinglto

55.21 edge_curve_pcurves

This function returns the set of pcurves that are associated with (i.e., represent the geometry of) an
edge_curve

EXPRESS specification

)
FUNCTION edge_curve_pcurves (an_edge : edge_curve;
the_surface_curves : SET OF surface_curve)
: SET OF pcurve;

228 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

LOCAL

a_curve . curve;

result : SET OF pcurve;

the_geometry : LIST[1:2] OF pcurve_or_surface;
END_LOCAL;

a_curve = an_edge.edge_geometry;

result = [];

IF 'GEOMETRY_SCHEMA.PCURVE’' IN TYPEOF(a_curve) THEN
result := result + a_curve;
ELSE
IF 'GEOMETRY_SCHEMA.SURFACE_CURVE’ IN TYPEOF(a_curve) THEN
the_geometry := a_curve\surface_curve.associated _geometry;
REPEAT k := 1 TO SIZEOF(the_geometry);
IF 'GEOMETRY_SCHEMA.PCURVE’ IN TYPEOF (the geometry[k])

THEN
result := result + the_geometry[K];
END_IF;
END_REPEAT,
ELSE
REPEAT j := 1 TO SIZEOF(the_surface_curves);
the_geometry := the_surface_curves|j.associated_geometry;
IF the_surface_curves[jl.curve_3d :=: a_curve
THEN
REPEAT k := 1 TO SIZEOF(the_geometry);
IF 'GEOMETRY_SCHEMA.PCURVE’ IN TYPEOF (the_geometry[K])
THEN
result := result + the_geometry[K];
END_IF;
END_REPEAT,
END_IF;
END_REPEAT,
END_IF;
END_IF;

RETURN (RESULT);
END_FUNCTION;

(*

Argument definitions

an_edge: (input) Theedge_curvewhose associated pcurves are to be found.
the_surface_curves:(input) The set of alsurface_curves within the scope of the search focurves.

result: (output) The set of albcurves associated withn_edge

(©ISO 2000 — All rights reserved 229

ISO 10303-42:2000(E)

5.5.22 vertex_point_pcurves

This function returns the set pcurves that are associated with (i.e., represent the geometry\a)-a
tex_point.

EXPRESS specification

*
)
FUNCTION vertex_point_pcurves (a_vertex : vertex_point;
the_degenerates : SET OF evaluated_degenerate_pcurve)
. SET OF degenerate_pcurve;
LOCAL
a_point : point;
result : SET OF degenerate_pcurve;
END_LOCAL;
a_point := a_vertex.vertex_geometry;
result = [];
IF 'GEOMETRY_SCHEMA.DEGENERATE_PCURVE' IN TYPEOF(a_point) THEN
result := result + a_point;
ELSE
REPEAT j := 1 TO SIZEOF(the_degenerates);
IF (the_degenerates[j].equivalent_point :=: a_point) THEN
result := result + the_degeneratesyj];
END_IF;
END_REPEAT,
END_IF;

RETURN (RESULT);
END_FUNCTION;

(*

Argument definitions

a_vertex: (input) Thevertex_pointwhose associated pcurves are to be found.

the_degenerates:(input) The set of alevaluated_degenerate_pcungewithin the scope of the search
for pcurves.

result: (output) The set of alllegenerate_pcurve having the same geometryasvertex

EXPRESS specification

)
END_SCHEMA; -- end TOPOLOGY schema
(*

230 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

6 Geometric models

The following EXPRESS declaration begins tieometric_model_schemand identifies the necessary
external references.

EXPRESS specification

*
)
SCHEMA geometric_model_schema;

REFERENCE FROM geometry schema;

REFERENCE FROM topology_schema;

REFERENCE FROM measure_schema(length_measure,
parameter_value,
plane_angle_measure,
plane_angle_unit,
positive_length_measure,
positive_plane_angle_measure);

(*

NOTE 1- The schemas referenced above can be found in the following Parts of ISO 10303:
geometry_schema Clause 4 of this part of ISO 10303
topology_schema Clause 5 of this part of ISO 10303
measure_schema ISO 10303-41

NOTE 2 - See annex D, figures D.17 - D.20, for a graphical presentation of this schema.

6.1 Introduction

The subject of thgeometric_modelschema is the set of basic resources necessary for the communica-
tion of data describing the size, position, and shape of objectssdlice modelsubtypes provide basic
resources for the communication of data describing the precise size and shape of three-dimensional solid
objects. The two classical types of solid model, constructive solid geometry (CSG) and boundary repre-
sentation (B-rep) are included. Also included in this clause are entities providing less complete geometric
and topological information than the full CSG or B-rep models. The use of these entities is appropriate
for communication with systems whose capability differs from that of solid modelling systems.

The entities in this schema are arranged in a logical order beginning witiolide modelsupertype and

its various subtypes. These subtypes include the different types of boundary representations (B-reps)
and the CSG solids. After theolid_modelsubtypes the surface model entities are grouped together,
followed by the wireframe models and the geometric sets.

(©ISO 2000 — All rights reserved 231

ISO 10303-42:2000(E)

6.2 Fundamental concepts and assumptions

The constructive solid geometry models are represented by their component primitives and the sequence
of Boolean operationsifiion, intersection or difference) used in their construction. The standard CSG
primitives are thecong eccentric_cone cylinder, sphere torus, block, right_angular_wedge ellip-

soid, tetrahedron and pyramid. These primitives should be defined in their final position and orientation.
A set of two dimensional primitives is included for use in the creation of two dimensional CSG solids.
The entity which communicates the logical sequence of Boolean operationdidiean_resultwhich
identifies an operator and two operands. The operands can themseloeslban_resuls, thus en-
abling nested operations. In addition to the CSG primitives, any solid model, including, in particular,
swept solids anthalf_space_solig@ may be Boolean operands. The swept solids arewlept_area_-
solids and theswept_face_solidsThe swept solids are obtained by extruding or sweeping a planar face
which may contain holes. THelf_space_solids essentially defined as a semi-infinite solid on one side
of a surface; it may be limited bylzox_domain Thehalf_space_2ds an equivalent two dimensional
entity and represents the region to one side of a curve.

B-rep models are represented by the set of shells defining their exterior or interior boundaries. Con-
straints ensure that the associated geometry is well defined and that the Euler formula connecting the
numbers of vertices, edges, faces, loops and shells in the model is satisfiethc@&teel_brepis re-

stricted to represent B-reps in which all faces are planar and every logglg doop.

Thesolid_replicaentity provides a mechanism for copying an existing solid in a new location.

Theshell_based_surface_modglace based_surface_modghell_based_wireframe_modekdge_-
based_wireframe_modelgeometric_setandgeometric_curve_seentities do not enforce the integrity
checks of themanifold_solid _brep and can be used for the communication of incomplete models or
non-manifold objects, including two-dimensional models.

6.3 Geometric model type definitions

6.3.1 boolean_operand
This select type identifies all those types of entities which may participate in a boolean operation to form

a CSG solid. Thisincludes provision for the special case of a two dimensional 'solid’ which is an arcwise
connected finite region in two dimensional space defined by boolean operations with 2D operands.

EXPRESS specification

%)

TYPE boolean_operand = SELECT
(solid_model,
half_space_solid,

232 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

csg_primitive,
boolean_result,
half_space_2d);
END_TYPE;
(*

6.3.2 boolean_operator

This type defines the three boolean operators used in the definition of CSG solids.

EXPRESS specification

*

)

TYPE boolean_operator = ENUMERATION OF
(union,
intersection,
difference);

END_TYPE;

(*

Enumerated item definitions

union: The operation of constructing the regularised set theoretic union of the volumes defined by two
solids.

intersection: The operation of constructing the regularised set theoretic intersection of the volumes
defined by two solids.

difference: The regularised set theoretic difference between the volumes defined by two solids.

6.3.3 CSg_primitive

This select type defines the set of CSG primitives which may participate in boolean operations. The 3D
CSG primitives aresphere, ellipsoid, right_circular_cone,eccentric_cone, right_circular_cylinder,

torus, block, faceted_primitive, rectangular_pyramidandright_angular_wedge The 2D CSG prim-

itives which are all types gbrimitive_2d may participate in boolean operations with other two dimen-
sional entities.

EXPRESS specification

*)
TYPE csg_primitive = SELECT

(©ISO 2000 — All rights reserved 233

ISO 10303-42:2000(E)

(sphere,
ellipsoid,
block,
right_angular_wedge,
faceted_primitive,
rectangular_pyramid,
torus,
right_circular_cone,
eccentric_cone,
right_circular_cylinder,
cyclide_segment_solid,
primitive_2d);
END_TYPE;
(*

6.3.4 csg_select
This type identifies the types of entity which may be selected as the root of a CSG tree including a single

CSG primitive as a special case.

EXPRESS specification

*

)

TYPE csg_select = SELECT
(boolean_result,
csg_primitive);

END_TYPE;

(*

6.3.5 geometric_set_select

This select type identifies the types of entities which can occugieenetric_set

EXPRESS specification

*

)

TYPE geometric_set _select = SELECT
(point,
curve,
surface);

END_TYPE;

(*

234 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

6.3.6 surface_model
This type collects all possible surface model entities.

Some product model representations consist of collections of surfaces which do not necessarily form the
complete boundary of a solid. Such a model can be represented by a colledoasodrshells.

EXPRESS specification

*

)

TYPE surface_model = SELECT
(shell_based_surface_model,
face_based_surface_model);

END_TYPE;

(*
6.3.7 wireframe_model

This type collects all possible wireframe model entities.

A wireframe representation of a geometric model contains information only about the intersections of
the surfaces forming the boundary but does not contain information about the surfaces themselves.

EXPRESS specification

*

)

TYPE wireframe_model = SELECT
(shell_based_wireframe_model,
edge_based_wireframe_maodel);

END_TYPE;

(*

6.4 Geometric model entity definitions

The following entities are used in tlggometric_model_schema

6.4.1 solid_model

A solid_modelis a complete representation of the nominal shape of a product such that all points in the
interior are connected. Any point can be classified as being inside, outside or on the boundary of a solid.

(©ISO 2000 — All rights reserved 235

ISO 10303-42:2000(E)

There are several different types of solid model representations including 'solid’s defined as connected
regions in two dimensional space.

EXPRESS specification

*
)
ENTITY solid_model
SUPERTYPE OF (ONEOF(csg_solid, manifold_solid_brep, swept face solid,
swept_area_solid, solid_replica,
brep_2d, trimmed_volume))
SUBTYPE OF (geometric_representation_item);
END_ENTITY;

(*

6.4.2 manifold_solid_brep

A manifold_solid_brepis a finite, arcwise connected volume bounded by one or more surfaces, each
of which is a connected, oriented, finite, closed 2-manifold. There is no restriction on the number of
through holes, nor on the number of voids within the volume.

The Boundary Representation (B-rep) of a manifold solid utilises a graph of edges and vertices embedded
in a connected, oriented, finite, closed two manifold surface. The embedded graph divides the surface
into arcwise connected areas known as faces. The edges and vertices, therefore, form the boundaries
of the faces and the domain of a face does not include its boundaries. The embedded graph may be
disconnected and may be a pseudograph. The graph is labelled; that is, #gcmehe graph has

a unique identity. The geometric surface definition used to specify the geometry of a face shall be 2-
manifold embeddable in the plane within the domain of the face. In other words, it shall be connected,
oriented, finite, non-self-intersecting, and of surface genus 0.

Faces do not intersect except along their boundaries. Each edge along the boundary of a face is shared by
at most one other face in the assemblage. The assemblage of edges in the B-rep do not intersect except at
their boundaries (i.e., vertices). The geometric curve definition used to specify the geometry of an edge
shall be arcwise connected and shall not self-intersect or overlap within the domain of the edge. The
geometry of an edge shall be consistent with the geometry of the faces of which it forms a partial bound.

The geometry used to define a vertex shall be consistent with the geometry of the faces and edges of
which it forms a partial bound.

A B-rep is represented by one or marlesed_shelB which shall be disjoint. One shell, the outer, shall
completely enclose all the other shells and no other shell may enclose a shell. The facility to define
a B-rep with one or more internal voids is provided by brep_with_voids subtype. The following
version of the Euler formula shall be satisfied

Xms =V = E4+2F — L1 —2(S—G°) =0 (10)

236 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)
whereV., &£, F, L; andS are the numbers of unique vertices, edges, faces, face bounds and shells in the
model and7? is the sum of the genus of the shells.

More specifically, the topological entities shall conform to the following constraints, whelenotes a
manifold solid B-rep:

— The shells shall be unique

(B)[S]= (B){5}

— Each face in the B-rep is unique

(B)ISDIE] = (B)[SDAETS

— Eachloopis unique

— Each (edge + logical) pair is unique

((BISDEDILDIE] = (BISDIEDILDL LY

— Each edge in the B-rep is either used by exactly two loops or twice by one loop

|((((B)ISDIFDILDAER = 2/(((B)SDIFDILDE
Thatis, inthe lis{ (((B)[S])[#])[L])[F] each edge appears exactly twice.

— Equation (10) shall be satisfied

2(B)[SN =23 6" = [((BSHIEMLDIENVH + (B SHIFIL DV
=B SHIFDALIAES + 2 ((BSDIET = [(((B)STIFDIL]]

The topological normal of the B-rep at each point on its boundary is the surface normal direction that
points away from the solid material. Tldosed_shellnormals, as used, shall be consistent with the
topological normal of the B-rep. Theanifold_solid_brephas two subtypesaceted_brepandbrep_-
with_voids, with which there exists a default ANDOR relationship. The following can all be instantiated:

— manifold_solid_brep
— brep_with_voids
— faceted_brep

— faceted_brepAND brep_with_voids

(©ISO 2000 — All rights reserved 237

ISO 10303-42:2000(E)

EXPRESS specification

*

)

ENTITY manifold_solid_brep
SUBTYPE OF (solid_model);
outer : closed_shell;

END_ENTITY;

(*

Attribute definitions

outer: A closed_shelldefining the exterior boundary of the solid. The shell normal shall point away
from the interior of the solid.

Informal propositions

IP1: The dimensionality of ananifold_solid_brepshall be 3.
IP2: The extent of thenanifold_solid_brepshall be finite and non-zero.

IP3: No vertex_point, undirectededge_curve(i.e, one which is not ariented_edg#, or undirected
face_surface(i.e., one which is not ariented_face referenced by ananifold_solid_brep shall inter-
sect any othevertex_point, undirectecedge_curve or undirectedace_surfacereferenced by the same
manifold_solid_brep.

IP4: Distinctloops referenced by the sarfece shall have no commowertexs.

NOTE - This implies that distinct loops of the same face have ho common edges. If geometry is present,
distinct loops of the same face do not intersect.

IP5: All topological elements of theanifold_solid_brep shall have defined associated geometry.

IP6: The shell normals shall agree with the B-rep normal and point away from the solid represented by
the B-rep.

IP7: Each face shall be referenced only once by the shells aht@fold_solid_brep.
IP8: Eachoriented_edgein themanifold_solid_brep shall be referenced only once.

IP9: Each undirected edge shall be referenced exactly twice by the loops in the facemaiiff@d_-
solid_brep's shells.

IP10: The Euler equation shall be satisfied for the boundary representation, where the genus term shell_-
genus is the sum of the genus values for the shells of the B-rep.

IP11: A manifold_solid_brep, which is not &aceted_brep shall not referencpoly_loops.

IP12: A faceted_brepcan reference onlgoly_loops as face boundaries.

238 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

6.4.3 brep_with_voids

A brep_with_voidsis a special subtype of teanifold_solid_brepwhich contains one or more voidsin
its interior. The voids are representeddriented_closed_shefi which are defined so that tbdented_ -
closed_shelhormals point into the void, that is, witirientation FALSE. A brep_with_voidscan also
be afaceted_brep

EXPRESS specification

)
ENTITY brep_with_voids

SUBTYPE OF (manifold_solid_brep);

voids : SET [1:?] OF oriented_closed_shell;
END_ENTITY;

(*

Attribute definitions

SELF\manifold_solid_brep.outer: An oriented_closed_shellefining the exterior boundary of the
solid. The shell normal shall point away from the interior of the solid.

voids: Set oforiented_closed_she#l defining voids within the solid. The set may contain one or more
shells.

Informal propositions

IP1: Each void shell shall be disjoint from the outer shell and from every other void shell.

IP2: Each void shell shall be enclosed within the outer shell but not within any other void shell. In
particular, the outer shell is not in the set of void shells.

IP3: Each shell in thenanifold_solid_brepshall be referenced only once.

6.4.4 faceted _brep

A faceted_brepis a simple form of boundary representation model in which all faces are planar and all
edges are straight lines.

NOTE - Thefaceted_brephas been introduced in order to support the large number of systems that al-
low boundary type solid representations with planarae$ only. Faceted models may be represented by
manifold_solid_brepbut their representation afaceted_brepwill be more compact.

(©ISO 2000 — All rights reserved 239

ISO 10303-42:2000(E)

Unlike the B-rep model, edges and vertices are not represented explicitly in the model but are implicitly
available through thpoly_loopentity. Afaceted_brephas to meet the same topological constraints as
themanifold_solid_brep.

EXPRESS specification

)
ENTITY faceted_brep

SUBTYPE OF (manifold_solid_brep);
END_ENTITY;

(*

Informal propositions

IP1: Allthe bounding loops of all the faces of all the shells in taeeted_brepshall be of typeoly -
loop.

IP2: The faces in the shells may have implicit or explicit surface geometry. If explicit, the face surface
shall be a plane. All polyloops defining the face shall be coplanar.

6.4.5 brep_2d

A brep_2dis a bounded two-dimensional region defined by a face. Any two-dimensional point can be
classified as being inside, outside or on the boundary laep_2d. A brep_2d shall have an outer
boundary and may have any number of holes.

EXPRESS specification

)
ENTITY brep_2d
SUBTYPE OF (solid_model);
extent : face;
WHERE
WR1: SIZEOF ([TOPOLOGY_SCHEMA.FACE_SURFACE’,
"TOPOLOGY_SCHEMA.SUBFACE’, 'TOPOLOGY_SCHEMA.ORIENTED_FACE’] *
TYPEOF (SELF.extent)) = O;
WR2 : SIZEOF (QUERY (bnds <* extent.bounds |
NOT (TOPOLOGY_SCHEMA.EDGE_LOOP’ IN TYPEOF(bnds.bound)))) = 0;
WR3 : SIZEOF (QUERY (bnds <* extent.bounds |
'TOPOLOGY_SCHEMA.FACE_OUTER_BOUND’ IN TYPEOF(bnds))) = 1;
WR4 : SIZEOF(QUERY (elp_fbnds <* QUERY (bnds <* extent.bounds |
'TOPOLOGY_SCHEMA.EDGE_LOOP’ IN TYPEOF(bnds.bound)) |
NOT (SIZEOF (QUERY (oe <* elp_fbnds.bound\path.edge_list | NOT
((TOPOLOGY_SCHEMA.EDGE_CURVE’ IN TYPEOF(oe.edge_element)) AND

240 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

(oe.edge_element\geometric_representation_item.dim = 2)))) =
0))) = 0
END_ENTITY;
(*

Attribute definitions

extent: The face which defines the region of two-dimensional space occupied byeghe2d.

Formal propositions

WR1: extent shall not be dace of typeface_surface subface or oriented_face
WR2: Eachface_boundused to define thextent shall be of typeedge_loop
WR3: Precisely one of the bounds of tfece shall be of typdace_outer_bound

WRA4: Eachedgeused to define the bounds shall be of tyalge curveand shall be two-dimensional.

6.4.6 csg_solid

A solid represented as a CSG model is defined by a collection of so-called primitive solids, combined
using regularised boolean operations. The allowed operations are intersection, union and difference. As
a special case @sg_solidcan also consist of a single CSG primitive.

A regularised subset of space is the closure of its interior, where this phrase is interpreted in the usual
sense of point set topology. Hooolean_resuls regularisation has the effect of removing dangling edges
and other anomalies produced by the original operations.

A CSG solid requires two kinds of information for its complete definition: geometric and structural.

The geometric information is conveyed bglid_modek. These typically are primitive volumes such
as cylinders, wedges and extrusions, but can include general B-rep msaléds.modek can also be
solid_replicas (transformed solids) artthlf_space_solids

The structural information is in a tree (strictly, an acyclic directed graplbpofean_resultand CSG
solids, which represent a ‘recipe’ for building the solid. The terminal nodes are the geometric primitives
and other solids. Evergsg_solidhas precisely onboolean_resultassociated with it which is the root

of the tree that defines the solid. (There may be furbealean_resuls within the tree as operands).
The significance of &sg_solidentity is that the solid defined by the associated tree is thus identified
as a significant object in itself, and in this way it is distinguished from oltoeiean_resultentities
representing intermediate results during the construction process.

(©ISO 2000 — All rights reserved 241

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY csg_solid
SUBTYPE OF (solid_model);
tree_root_expression : csg_select;
END_ENTITY;

(*

Attribute definitions

tree_root_expression: Boolean expression of primitives and regularised operators describing the solid.
The root of the tree of boolean expressions is given here explicitlyoaokean_resultentity, or as a
Csg_primitive.

6.4.7 boolean_result

A boolean_resultis the result of a regularised operation on two solids to create a new solid. Valid
operations are regularised union, regularised intersection, and regularised difference. For purposes of
Boolean operations, a solid is considered to be a regularised set of points.

The finalboolean_resultdepends upon the operation and the two operands. In the case of the difference
operator the order of the operands is also significant. The operator can beugitherintersection or
difference. The effect of these operators is described below.

union on two solids is the new solid that contains all the points that are in either the
first_operand or thesecond_operancbr both.

intersectionon two solids is the new solid that is the regularisation of the set of all points that are in both
thefirst_operand and thesecond_operand

The result of thelifference operation on two solids is the regularisation of the set of all points which are
in thefirst_operand, but not in thesecond_operand

NOTE - For example if the first operand is a block and the second operand is a solid cylinder of suitable
dimensions and location thmolean_resultproduced with the difference operator would be a block with a
circular hole.

EXPRESS specification

%)
ENTITY boolean_result
SUBTYPE OF (geometric_representation_item);

242 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

operator . boolean_operator;
first_operand : boolean_operand,;
second_operand : boolean_operand;

END_ENTITY;

(*

Attribute definitions

operator: The boolean operator used in the operation to create the result.
first_operand: The first operand to be operated upon by the boolean operation.

second_operand: The second operand specified for the operation.

6.4.8 block

A block is a solid rectangular parallelepiped, defined with a location and placement coordinate system.
The block is specified by the positive lengtixs y, andz along the axes of the placement coordinate
system, and has one vertex at the origin of the placement coordinate system.

EXPRESS specification

%)

ENTITY block
SUBTYPE OF (geometric_representation_item);
position : axis2_placement_3d;

X . positive_length_measure;
y . positive_length_measure;
z . positive_length_measure;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the axis system for the primitive. The block has one vertex at
position.locationand its edges aligned with the placement axes in the positive sense.

x: The size of the block along the placement X axis, {pos.p[1]).
y: The size of the block along the placement Y axis, {fs.p[2]).
z: The size of the block along the placement Z axis, {fpas.p[3]).

(©ISO 2000 — All rights reserved 243

ISO 10303-42:2000(E)

Itx

location p[1]
position attributes

Figure 21 — Right angular wedge and its attributes

6.4.9 right_angular_wedge

A right_angular_wedgecan be envisioned as the result of intersecting a block with a plane perpendicu-
lar to one of its faces. It is defined with a location and local coordinate system. A triangular/trapezoidal
face lies in the plane defined by the placement X and Y axes. This face is defined by positivexengths
andy along the placement X and Y axes, by the ledgghif nonzero) parallel to the X axis at a distance

y from the placement origin, and by the line connecting the ends of #melltx segments. The remain-

der of the wedge is specified by the positive lerg#iong the placement Z axis which defines a distance
through which the trapezoid or triangle is extrudedtXdf= 0, the wedge has five faces; otherwise, it has
six faces.

NOTE - See Figure 21 for interpretation of attributes.

EXPRESS specification

)

244 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

ENTITY right_angular_wedge
SUBTYPE OF (geometric_representation_item);
position : axis2_placement_3d;

X . positive_length_measure;
y . positive_length_measure;
z . positive_length_measure;
Itx . length_measure;

WHERE
WR1: ((0.0 <= Itx) AND (Itx < Xx));

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the placement axis system for the primitive. The wedge has
one vertex aposition.locationand its edges aligned with the placement axes in the positive sense.

X: The size of the wedge along the placement X axis.
y: The size of the wedge along the placement Y axis.
z: The size of the wedge along the placement Z axis.

ltx: The length in the positive X direction of the smaller surface of the wedge.

Formal propositions

WR1: Itx shall be non-negative and less than

6.4.10 rectangular_pyramid

A rectangular_pyramid is a solid pyramid with a rectangular base. The apex of the pyramid is directly
above the centre point of the base. Téetangular_pyramid is specified by its position, which provides
a placement coordinate system, its length, depth and height.

EXPRESS specification

%)
ENTITY rectangular_pyramid
SUBTYPE OF (geometric_representation_item);

position . axis2_placement_3d;

xlength . positive_length_measure;

ylength . positive_length_measure;

height . positive_length_measure;
END_ENTITY;

(*

(©ISO 2000 — All rights reserved 245

ISO 10303-42:2000(E)

Attribute definitions

position: The location and orientation of the pyramijabsition defines a placement coordinate system
for the pyramid. The pyramid has one corner of its bagmoattion.locationand the edges of the base
are aligned with the first two placement axes in the positive sense.

xlength: The length of the base measured along the placement X axisi¢pas{1]).
ylength: The length of the base measured along the placement Y axisi¢pos{2]).

height: The height of the apex above the plane of the base, measured in the direction of the placement
Z axis (position.p[3]).

6.4.11 faceted_primitive

A faceted_primitiveis a type of CSG primitive with planar faces. It is defined by a list of four or more
points which locate the vertices. These points shall not be coplanar.

EXPRESS specification

*

)

ENTITY faceted_primitive
SUPERTYPE OF (ONEOF(tetrahedron, convex_hexahedron))
SUBTYPE OF (geometric_representation_item) ;

points : LIST[4:?] OF UNIQUE cartesian_point ;

WHERE
WR1: points[1].dim = 3 ;

END_ENTITY;

(*

Attribute definitions

points: Thecartesian_poinss that locate the vertices of tifi@éceted_primitive.

Formal propositions

WRZ1: The coordinate space dimensionpafints[1] shall be 3.

NOTE - The rulecompatible_dimensiorensures that all theartesian_pointattributes of this entity have
the same dimension.

246 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Informal propositions

IP1: The points in the lispoints shall not be coplanar.

IP2: Thepoints shall define a closed solid with planar faces.

NOTE 1- Thepoints list on its own is not sufficient to completely define a closed solid, for a complete
definition this entity is instatiated as one of its subtypes.

NOTE 2 - The formal verification of the informal propositions occurs in the subtypes.

6.4.12 tetrahedron

A tetrahedron is a type of CSG primitive with 4 vertices and 4 triangular faces. It is defined by the four
points which locate the vertices. These points shall not be coplanar.

EXPRESS specification

)
ENTITY tetrahedron
SUBTYPE OF (faceted_primitive);
WHERE
WR1: SIZEOF(points) = 4 ;
WR2: above_plane(points[1], points[2], points[3], points[4]) <> 0.0;
END_ENTITY;

(*

Attribute definitions

points: Thecartesian_points that locate the vertices of thetrahedron.

Formal propositions

WR1: The list ofpoints shall contain &£artesian_point.

WR2: points shall not be coplanar. This is tested by verifying that the fourth point is either above, or
below, the plane of the other 3 points.

(©ISO 2000 — All rights reserved 247

ISO 10303-42:2000(E)

6.4.13 convex_hexahedron

A convex_hexahedrorns a type of CSG primitive with 8 vertices and 6 four-sided faces. It is defined by
the 8 points which locate the vertices.

EXPRESS specification

*)
ENTITY convex_hexahedron
SUBTYPE OF (faceted_ primitive);
WHERE
WR1: SIZEOF(points) = 8 ;

WR2: above_plane(points[1], points[2], points[3], points[4]) = 0.0;
WR3: above_plane(points[5], points[8], points[7], points[6]) = 0.0;
WRA4: above_plane(points[1], points[4], points[8], points[5]) = 0.0;
WRS5: above_plane(points[4], points[3], points[7], points[8]) = 0.0;
WR6: above_plane(points[3], points[2], points[6], points[7]) = 0.0;
WRY7: above_plane(points[1], points[5], points[6], points[2]) = 0.0;

WRS8: same_side([points[1], points[2], points[3]],
[points[5], points[6], points[7], points[8]]);
WR9: same_side([points[1], points[4], points[8]],
[points[3], points[7], points[6], points[2]]);
WR10: same_side([points[1], points[2], points[5]],
[points[3], points[7], points[8], points[4]]);
WR11: same_side([points[5], points[6], points[7]],
[points[1], points[2], points[3], points[4]]);
WR12: same_side([points[3], points[7], points[6]],
[points[1], points[4], points[8], points[5]]);
WR13: same_side([points[3], points[7], points[8]],
[points[1], points[5], points[6], points[2]]);
END_ENTITY;
(*

Attribute definitions

points: The cartesian_poins that locate the vertices of tlenvex_hexahedron These points are
ordered such thaoints[1], points[2], points[3], points[4] define, in anti-clockwise order, when viewed

from outside the solid, one planar face of the sqtidints[5], points[6], points[7], points[8] define the
opposite face, each of these points being connected by an edge to the corresponding point, with index
reduced by 4, on the opposite face.

NOTE 1- See Figure 22 for further information about theds and vertices.

248 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Formal propositions

WR1: The list ofpoints shall contain &artesian_point.

WR2: The first 4points shall be coplanar.

WR3: The final 4points shall be coplanar.

WRA4: points[1], points[4], points[8], points[5], shall be coplanar.
WRS5: points[4], points[3], points[7], points[8], shall be coplanar.
WR6: points[3], points[2], points[6], points[7], shall be coplanar.
WRY7: points[1], points[5], points[6], points[2], shall be coplanar.

1,

WRS8: points[5], points[6], points[7], points[8], shall all lie on the same side of the planegoints[1],
points[2], points[3].

WR9: points[3], points[7], points[6], points[2], shall all lie on the same side of the planegoints[1],
points[4], points[8].

WR10: points[4], points[3], points[7], points[8], shall all lie on the same side of the plangofnts[1],
points[2], points[5].

WR11: points[1], points[2], points[3], points[4], shall all lie on the same side of the plangoints[5],
points[6], points[7].

WR12: points[1], points[4], points[8], points[5], shall all lie on the same side of the plangoints[3],
points[7], points[6].

WR13: points[1], points[5], points[6], points[2], shall all lie on the same side of the plangoints[3],
points[7], points[8].

NOTE 2 - The final 6 rules ensure that theints define a convex figure.

6.4.14 sphere

A sphereis a CSG primitive with a spherical shape defined by a centre and a radius.

EXPRESS specification

*

)

ENTITY sphere
SUBTYPE OF (geometric_representation_item);
radius : positive_length_measure;
centre : point;

END_ENTITY;

(*

(©ISO 2000 — All rights reserved 249

ISO 10303-42:2000(E)

points[6]
ints[5
points[3] points[7]
points[8]
————————————————— points[3]
points[1]
points[4]
Figure 22 — Convex_hexahedron
Attribute definitions

radius: The radius of thephere

centre: The location of the centre of trephere

6.4.15 right_circular_cone

A right_circular_cone is a CSG primitive in the form of a cone which may be truncated. It is defined by

an axis, a point on the axis, the semi-angle of the cone, and a distance giving the location in the negative
direction along the axis from the point to the base of the cone. In addition, a radius is given, which, if
nonzero, gives the size and location of a truncated face of the cone.

EXPRESS specification

%)
ENTITY right_circular_cone
SUBTYPE OF (geometric_representation_item);

position . axisl_placement;

height . positive_length_measure;

radius . length_measure;

semi_angle : plane_angle_measure;
WHERE

250 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

WR1: radius >= 0.0;
END_ENTITY;
(*

Attribute definitions

position: The location of a point on the axis and the direction of the axis.

position.location: A point on the axis of the cone and at the centre of one of the planar circular faces,
or, if radius is zero, at the apex.

position.axis: The direction of the central axis of symmetry of the cone. The direction of the axis is out
of the closed solid from the point at the centre of the top face, if truncated, or from the aperaflihe
is zero.

height: The distance between the planar circular faces of the comadidis is greater than zero; or
from the base to the apex, if radius equals zero.

radius: The radius of the cone at the point on the axiedition.location). If the radius is zero, the
cone has an apex at this point. If ttaglius is greater than zero, the cone is truncated.

semi_angle: One half the angle of the cone. This is the angle between the axis and a generator of the
conical surface.

Formal propositions

WRZ1: Theradius shall be non-negative.

Informal propositions

IP1: Thesemi_angleshall be betweef® and90°.

6.4.16 right_circular_cylinder

A right_circular_cylinder is a CSG primitive in the form of a solid cylinder of finite height. It is defined

by an axis point at the centre of one planar circular face, an axis, a height, and a radius. The faces are
perpendicular to the axis and are circular discs with the specified radius. The height is the distance from
the first circular face centre in the positive direction of the axis to the second circular face centre.

EXPRESS specification

%)
ENTITY right_circular_cylinder
SUBTYPE OF (geometric_representation_item);

(©ISO 2000 — All rights reserved 251

ISO 10303-42:2000(E)

position . axisl_placement;
height . positive_length_measure;
radius . positive_length_measure;
END_ENTITY;
(*
Attribute definitions

position: The location of goint on the axis and the direction of the axis.

position.location: A point on the axis of the cylinder and at the centre of one of the planar circular
faces.

position.axis: The direction of the central axis of symmetry of the cylinder.
height: The distance between the planar circular faces of the cylinder.

radius: The radius of the cylinder.

6.4.17 eccentric_cone

An eccentric_cones a CSG primitive which is a generalisation of tight_circular_cone. Theeccen-
tric_cone may have an elliptic cross section, and may have a central axis which is not perpendicular to
the base. Depending upon the value of thio attribute it may be truncated, or may take the form of a
generalised cylinder. When truncated the top face of the cone is parallel to the plane of the base and has
a similar cross section.

EXPRESS specification

*

)

ENTITY eccentric_cone

SUBTYPE OF (geometric_representation_item);
position . axis2_placement_3d;
semi_axis_1 : positive_length_measure;
semi_axis_2 : positive_length_measure;

height . positive_length_measure;
x_offset . length_measure;
y_offset . length_measure;
ratio . REAL;
WHERE
WR1 : ratio >= 0.0;
END_ENTITY;

(*

252 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

position: The location of the centrgloint on the axis and the direction sémi_axis_1This defines the
centre and plane of the base of #eeentric_cone position.p[3] is normal to the base of thezcentric_-
cone

semi_axis_1:The length of the first radius of the base of the cone in the directiposition.p[1].
semi_axis_2:The length of the second radius of the base of the cone in the directpwsiion.p[2].
height: The height of the cone above the base measured in the directpmsidion.p[3].

x_offset: The distance, in the direction pbsition.p[1], to the central point of the top face of the cone
from the pointin the plane of this face directly above the central point of the base.

y_offset: The distance, in the direction pbsition.p[2], to the central point of the top face of the cone
from the pointin the plane of this face directly above the central point of the base.

ratio: The ratio of a radius of the top face to the corresponding radius of the base of the cone.

Formal propositions

WR1: Theratio shall not be negative.

NOTE 1- In the placement coordinate system definegduwition the central point of the top face of the
eccentric_conehas coordinatege_of fset, y_of fset, height).

NOTE 2 - Ifratio = 0.0 theeccentric_coneincludes the apex.
If ratio = 1.0 theeccentric_coneis in the form of a generalised cylinder with all cross sections of the same
dimensions.

6.4.18 torus

A torus is a solid primitive defined by sweeping the area of a circle (the generatrix) about a larger circle
(the directrix). The directrix is defined by a location and directiaxigl_placemenyt

EXPRESS specification

*
)
ENTITY torus
SUBTYPE OF (geometric_representation_item);
position . axisl_placement;
major_radius : positive_length_measure;
minor_radius : positive_length_measure;
WHERE
WR1: major_radius > minor_radius;
END_ENTITY;
(*

(©ISO 2000 — All rights reserved 253

ISO 10303-42:2000(E)

Attribute definitions

position: The location of the centrgloint on the axis and the direction of the axis. This defines the
centre and plane of the directrix.

major_radius: The radius of the directrix.

minor_radius: The radius of the generatrix.

Formal propositions

WR1: Themajor_radius shall be greater than thminor_radius.

6.4.19 ellipsoid

An ellipsoid is a type of CSG primitive in the form of a solid ellipsoid. It is defined by its location and
orientation and by the lengths of the three semi-axes.

EXPRESS specification

*

)

ENTITY ellipsoid

SUBTYPE OF (geometric_representation_item);

position . axis2_placement_3d;
semi_axis_1 : positive_length_measure;
semi_axis_2 : positive_length_measure;
semi_axis_3 : positive_length_measure;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of the ellipsoigosition.locationis a cartesian_pointat the
centre of the ellipsoid and the axes of the ellipsoid are aligned with the diregiositson. p.

semi_axis_1:The length of the semi-axis of the ellipsoid in ttieection position.p[1].
semi_axis_2:The length of the semi-axis of the ellipsoid in ttieection position.p[2].

semi_axis_3:The length of the semi-axis of the ellipsoid in ttieection position.p[3].

254 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

6.4.20 cyclide_segment_solid

A cyclide_segment_solids a partial Dupin cyclide solid (see Section 4.4.61). This solid has two planar
circular faces that in general have different radii and different normal directions. Around the boundary
of each of these faces the curved surface of the solid is tangent to a right circular cone. In the following
definition the semi-vertex angle of the cone isich case specified with respect to the outward normal

to its corresponding circular face.

EXPRESS specification

%)
ENTITY cyclide_segment_solid
SUBTYPE OF (geometric_representation_item);

position . axis2_placement_3d;
radiusl . positive_length_measure;
radius2 . positive_length_measure;

cone_anglel : plane_angle_measure;

cone_angle2 : plane_angle_measure;

turn_angle : plane_angle_measure;
END_ENTITY;

(*

Attribute definitions

position: Defines a local system of coordinates in which two of the coordinate planes are axes of sym-
metry of the cyclide.

radiusl: The radius of the first circular end face of the solid.
radius2: The radius of the second circular end face of the solid.

cone_anglel:The semi-vertex angle of the cone tangent to the curved surface around the first circular
end face of the solid, taken as positive if the cone vertex lies in the direction of the outward-facing normal
from that face.

cone_angle2:The semi-vertex angle of the cone tangentto the curved surface around the second circular
end face of the solid, taken as positive if the cone vertex lies in the direction of the outward-facing normal
from the centre of that face.

turn_angle: The angle between the planes of the two circular faces of the solid, measured in the sector
containing the solid.

Informal propositions

IP1: Theturn_angle shall lie in the rang®° to 360° (see NOTE 1).

(©ISO 2000 — All rights reserved 255

ISO 10303-42:2000(E)

IP2: The two tangent cones at the ends of the segment have generators lying in the plane containing
the directrix of the Dupin cyclide that define a quadrilateral circumscribing a circle. When one cone
reduces to a cylinder its generators become a pair of parallel lines. When both cones are cylinders all
four generators are parallel and the circumscribed circle lies at infinity (see NOTE 2).

NOTE 1- Interms of the definition of the@upin_cyclide_surface(as given in Section 4.4.61), thern_-
angleis the difference in the values afbetween the isoparametric lines corresponding to the boundaries of
the two end faces of the solid.

NOTE 2 - The attributes of theyclide_segment_solidre not mutually independent. Informal proposition
IP2 expresses this fact, and states the simplest geometric characterisation of the dependency. Any correctly
generatedlupin_cyclide_segmentill satisfy IP2. The condition is illustrated in Figure 23.

7
-7
<7

/

-
T~ - /

Figure 23 — Cross section of cyclide _segment_solid

6.4.21 half_space_solid

A half_space_solids defined by the half space which is the regular subset of the domain which lies on
one side of an unbounded surface. The domain is limited by an orthogonal boxboxtbe _half _space
subtype. The side of the surface which is in the half space is determined by the surface normals and the
agreement flag. If the agreement flag is TRUE, then the subset is the one the normals point away from.
If the agreement flag is FALSE, then the subset is the one the normals point into.

For a validhalf_space_solidthe surface shall divide the domain into exactly two subsets. Also, within
the domain the surface shall be manifold and all the surface normals shall point into the same subset.

NOTE - Ahalf_space_solids nota subtype afolid_mode} half_space_solid are only useful as operands
in Boolean expressions.

256 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY half_space_solid
SUBTYPE OF(geometric_representation_item);

base_surface . surface;
agreement_flag : BOOLEAN;
END_ENTITY;
(*
Attribute definitions

base_surface: surfacelefining the boundary of the half space.

agreement_flag: Theagreement_flags TRUE if the normal to théase_surfacgoints away from the
material of thehalf_space_solid

Informal propositions

IP1: Thebase_surfaceshall divide the domain into exactly two subsets. If the
half_space_solids of subtypeboxed_half_spacethe domain in question is that of the attribetaclo-
sure.

6.4.22 boxed_half space

This entity is a subtype of thaalf_space_solidvhich is trimmed by a surrounding rectangular box. The
box has its edges parallel to the coordinate axes of the geometric coordinate system.

NOTE - The purpose of the box is to facilitate CSG computations by producing a solid of finite size.

EXPRESS specification

*

)

ENTITY boxed_half _space
SUBTYPE OF(half_space_solid);
enclosure : box_domain;

END_ENTITY;

(*

(©ISO 2000 — All rights reserved 257

ISO 10303-42:2000(E)

Attribute definitions

enclosure: The box which bounds the half space for computational purposes only.

6.4.23 box_domain

A box_domainis an orthogonal box oriented parallel to the axes of the geometric coordinate system
which may be used to limit the domain offalf_space_solid Thebox_domainis specified by the

point at the corner of the box with minimum coordinates, and the lengths of the sides measured in the
directions of the coordinate axes.

EXPRESS specification

*
)
ENTITY box_domain;
corner : cartesian_point;
xlength : positive_length_measure;
ylength : positive_length_measure;
zlength : positive_length_measure;
WHERE
WR1: SIZEOF(QUERY(item <* USEDIN(SELF,”)|
NOT (GEOMETRIC_MODEL_SCHEMA.BOXED_ HALF_SPACE’
IN TYPEOF(item)))) = O;
END_ENTITY;

(*

Attribute definitions

corner: cartesian_pointat the corner of box with minimum coordinate values.
xlength: The length of thdbox_domainalong the edge parallel to the x axis.
ylength: The length of théoox_domainalong the edge parallel to the y axis.

zlength: The length of thdoox_domainalong the edge parallel to the z axis.

Formal propositions

WR1: The only use of the box domain shall be to define the limits fooxed_half _space

258 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

6.4.24 primitive_2d

A primitive_2d is a two-dimensional CSG primitive represented as eitharclar_area, elliptic_-
area, rectangular_area, or polygonal_area primitive_2ds may be used with other two-dimensional
objects to createsg_solid in 2D.

NOTE - The combination girimitive_2dsand any of the three-dimensioray_primitivesin aboolean_-
result is prohibited by the constraints @eometric_representation_itemn the geometry schema.

EXPRESS specification

*
)
ENTITY primitive_2d
SUPERTYPE OF (ONEOF (circular_area, elliptic_area, rectangular_area,
polygonal_area))
SUBTYPE OF (geometric_representation_item);

WHERE
WR1 : SELF\geometric_representation_item.dim = 2;
END_ENTITY;

(*

Formal propositions

WR1: The coordinate space dimensionality giramitive_2d shall be 2.

6.4.25 circular_area

A circular_area is a type ofprimitive_2d which has the form of a circular disk. It is defined by a centre
point and a radius.

EXPRESS specification

*
)
ENTITY circular_area
SUBTYPE OF (primitive_2d);
centre: cartesian_point;
radius: positive_length_measure;
END_ENTITY;

(*

Attribute definitions

centre: Thecartesian_pointat the centre of theircular_area.

(©ISO 2000 — All rights reserved 259

ISO 10303-42:2000(E)

radius: The radius of theircular_area.

6.4.26 elliptic_area

An elliptic_area is a type ofprimitive_2d which has an ellipse as outer boundary. It is defined by its
position and the lengths of the semi-axes of the bounding ellipse.

EXPRESS specification

*

)

ENTITY elliptic_area

SUBTYPE OF (primitive_2d);

position : axis2_placement_2d;
semi_axis_1 : positive_length_measure;
semi_axis_2 : positive_length_measure;

END_ENTITY;

(*

Attribute definitions

position: The location and orientation of thedliptic_area. The elliptic_area has its centre gposi-
tion.location and its pincipal axes are aligned with the placement axes..

x: The length of the semi_axis aligned with the placement X gasigion.p[1]).

y: The length of the semi_axis of the ellipse which is aligned with tlaegment Y axisgosition.p[2]).

6.4.27 rectangular_area

A rectangular_areais a type ofprimitive_2d with a rectangular shape. It is defined by a placement
coordinate system and linear dimensions. It is specified by the positive lengths x and y along the axes of
the placement coordinate system, and has one corner at the origin of the placement coordinate system.

EXPRESS specification

*

)

ENTITY rectangular_area

SUBTYPE OF (primitive_2d);

position: axis2_placement_2d;
X: positive_length_measure;
y: positive_length_measure;

END_ENTITY;

(*

260

(©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

position: The location and orientation of thiectangular_area Therectangular_areahas one vertex
(with minimum coordinate values) position.locationand its edges are aligned with the placement axes
in the positive sense.

x: The length of theectangular_areaalong the placement X axipg@sition.p[1]).

y: The length of theectangular_areaalong the placement Y axipg@sition.p[2]).

6.4.28 polygonal_area
A polygonal_areais a type ofprimitive_2d with straight edges. It is defined by a list of three or more

cartesian_point which implicitly define edges connecting consecutive points. The final edge is from
the last point in the list oboundsto the first.

EXPRESS specification

*
)
ENTITY polygonal_area
SUBTYPE OF (primitive_2d);
bounds: LIST [3:?] OF UNIQUE cartesian_point;
END_ENTITY;

(*

Attribute definitions

bounds: The two dimensionatartesian_pointsthat are at the vertices of thglygonal_area The
linear segments joining consecutive points form the boundary gighgonal_area

Informal propositions

IP1: The implicit edges of thpolygonal_areashall not intersect each other.

6.4.29 half_space_2d

A half_space_2ds a partially bounded region of two-dimensional space. It is defined as the half plane
which is the regular subset of the domain that lies on one side of an unbounded curve, or, of a closed
curve. The domain is limited by a rectangle in thetangled_half_spaceubtype. The side of the curve
which is in the half plane is determined by the curve direction anggreement_flag

For a validhalf_space_2d the curve shall divide the 2D space into exactly two connected regions.
Within the domain of thénalf_space_2dhebase_curveshall be manifold.

(©ISO 2000 — All rights reserved 261

ISO 10303-42:2000(E)

NOTE - Ahalf_space_2dnay be used as an operand in a Boolean operation provided the final CSG object
is finite and arcwise connected.

EXPRESS specification

*
)
ENTITY half space_2d
SUBTYPE OF (geometric_representation_item);
base _curve: curve;
agreement_flag: BOOLEAN,;
END_ENTITY;

(*

Attribute definitions

base_curve:the two dimensional curve defining the boundary of the half plane.

agreement_flag: BOOLEAN value indicating to which side of the curve thalf_space_2dies. If the
agreement_flagis TRUE, then the region defined is the one on the left as the curve is traversed in the
direction of increasing parameter. If tagreement_flags FALSE, then the region is on the right as the
curve is traversed in the direction of increasing parameter.

Informal propositions

IP1: Thebase_curveshall not be self-intersecting.

IP2: Thebase_curveshall divide the domain into exactly two connected subsets. This implies that,
unless thehalf_space_2dis of type rectangled_half_space the base_curveshall be unbounded or
closed.

6.4.30 rectangled_half space

A rectangled_half_spacés a type ofhalf_space_2dwvhich is trimmed by a surrounding rectangle. The
trimming rectangle has its edges parallel to the coordinate axes of the geometric coordinate system.

EXPRESS specification

*
)
ENTITY rectangled_half_space
SUBTYPE OF (half_space_2d);
enclosure: rectangle_domain;
END_ENTITY;

(*

262 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

enclosure: The rectangle which bounds the half plane for computational purposes.

6.4.31 rectangle_domain

A rectangle_domainis a rectangular area in two-dimensional space with its edges parallel to the coor-
dinate axes. It may be used to limit the domain ¢fadf_space_2d

EXPRESS specification

*
)
ENTITY rectangle_domain;
corner: cartesian_point;
xlength: positive_length_measure;
ylength: positive_length_measure;
WHERE
WR1: SIZEOF(QUERY(item <* USEDIN(SELF,)| NOT
(GEOMETRIC_MODEL_SCHEMA.RECTANGLED HALF_SPACE’ IN TYPEOF(item)))) = 0;
END_ENTITY;

(*

Attribute definitions

corner: The point at the corner of the rectangle with minimum coordinate values.
xlength: The length of theectangle_domainalong the edge parallel to the x axis.

ylength: The length of theectangle_domainalong the edge parallel to the y axis.

6.4.32 swept_face_solid

The swept_face_solicentity collects the entities which are defined procedurally by a sweeping action
on planar figures. The position in space of the swept solid will be dependent upon the position of the
swept_face The swept_facewill be a face of theswept_face_solidexcept in the case of a solid of
revolution with angle equal to 360 degrees.

EXPRESS specification

)
ENTITY swept_face_solid
SUPERTYPE OF (ONEOF(extruded_face solid, revolved_face_solid,
surface_curve_swept_face_solid))

(©ISO 2000 — All rights reserved 263

ISO 10303-42:2000(E)

SUBTYPE OF (solid_model);

swept_face : face_surface;
WHERE

WR1: 'GEOMETRY_SCHEMA.PLANE' IN TYPEOF(swept_face.face_geometry);
END_ENTITY;

(*

Attribute definitions

swept_face: Theface_surfacedefining the area to be swept. The extent of this face is defined by the
boundsattribute of the referencddce_surface

Formal propositions

WR1: Theswept_faceshall be planar. Thiace_geometryattribute of the
face_surfacereferenced shall beglane.

6.4.33 extruded_face solid

An extruded_face_solidis a solid defined by sweeping a plarface The direction of translation is
defined by alirection vector, and the length of the translation is defined by a distdep#h. The planar
face may have holes which will sweep into holes in the solid.

EXPRESS specification

)
ENTITY extruded_face_solid
SUBTYPE OF (swept_face_solid);
extruded_direction : direction;
depth . positive_length_measure;
WHERE
WR1: dot_product(
(SELF\swept_face_solid.swept_face.face_geometry\
elementary_surface.position.p[3]), extruded_direction) <> 0.0;
END_ENTITY;

(*

Attribute definitions

SELF\swept_face_solid.swept_faceThe face to be extruded to produce the solid.

extruded_direction: Thedirection in which the face is to be swept.

264 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

angle

swept_face

axis

Figure 24 — Revolved face solid

depth: The distance the face is to be swept.

Formal propositions

WR1: extruded_direction shall not be perpendicular to the normal to the plane of the
swept_face

6.4.34 revolved_face solid

A revolved_face_solids a solid of revolution formed by revolving a plarfaceabout an axis. The axis

shall be in the plane of the face and the axis shall not intersect the interior of the face. The planar face
may have holes which will sweep into holes in the solid. The direction of revolution is clockwise when
viewed along the axis in the positive direction. More precisely i the axis location and is the axis
direction andC is an arc on the surface of revolution generated by an arbitrary paintthe boundary

of the face, thel€ leavesp in direction

d x (p — A) as the face is revolved.

NOTE - See Figure 24 for illustration of attributes.

(©ISO 2000 — All rights reserved 265

ISO 10303-42:2000(E)

EXPRESS specification

*

)

ENTITY revolved_face solid
SUBTYPE OF (swept_face_solid);
axis : axisl_placement;
angle : plane_angle_measure;

DERIVE
axis_line : line := dummy_gri || curve() || line(axis.location,
dummy_gri || vector(axis.z, 1.0));
END_ENTITY;
(*
Attribute definitions

SELF\swept_face_solid.swept_faceThe face to be revolved to produce the solid.
axis: Axis about which revolution will take place.

angle: Angle through which the sweep will be made. This angle is measured from the plane of the swept
face.

axis_line: The line of the axis of revolution.

Informal propositions

IP1: axis_lineshall lie in plane obwept_faceattribute of theswept_face_solicupertype.
IP2: Theaxis_lineshall not intersect the interior of ttssvept_face

IP3: angleshall lie in the rang®° < angle < 360°.

6.4.35 surface_curve_swept _face_solid

A surface_curve_swept_face_solits a type ofswept_face_solidvhich is the result of sweeping a
face along alirectrix lying on areference_surface The orientation of thewept_faces related to the
direction of the surface normal.

The swept_faceis required to be dace_surfacelying in the planez = 0 and this is swept along the
directrix in such a way that the origin of the local coordinate system used to defisgvdp_facds on
thedirectrix and the local X axis is in the direction of the normal to teference_surfaceat the current

point. The resulting solid has the property that the cross section of the surface by the normal plane to the
directrix at any pointis a copy of thewept_face

The orientation of thewept_faceas it sweeps along thdirectrix is precisely defined by eartesian_-
transformation_operator_3d with attributes:

266 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

local_origin as point(0, 0, 0),
axislas the normaN to thereference_surfaceat the point of thelirectrix with parametew.
axis3as the direction of the tangent vectat the point of thalirectrix with parametet:.

The remaining attributes are defaulted to define a corresponding transformation Tatfixwhich
varies with thedirectrix parametew .

NOTE 1- The geometric shape of the solid is not dependent upon the curve parametrisation; the volume
depends upon the area of the face and the length afitbetrix .

EXPRESS specification

%)
ENTITY surface_curve_swept_face_solid
SUBTYPE OF (swept_face_solid);

directrix . curve;

start_param . REAL,;

end_param . REAL;

reference_surface : surface;
WHERE

WR1 : (NOT (GEOMETRY_SCHEMA.SURFACE_CURVE’ IN TYPEOF(directrix))) OR
(reference_surface IN (directrix\surface_curve.basis_surface));
END_ENTITY;

(*

Attribute definitions

directrix: The curve used to define the sweeping operation. The solid is generated by sweeping the
SELF\swept_face_solid.swept_facalong thedirectrix .

start_param: The parameter value on tli&ectrix at which the sweeping operation commences.
end_param: The parameter value on thigectrix at which the sweeping operation ends.

reference_surface: The surface containing thirectrix .

Formal propositions

WR1: If thedirectrix is asurface_curvethen thereference_surfaceshall be in thébasis_surfaceset
for this curve.

(©ISO 2000 — All rights reserved 267

ISO 10303-42:2000(E)

Informal propositions

IP1: Theswept_faceshall lie in the plane = 0.

IP2: Thedirectrix shall lie on theeference_surface

NOTE 2 - Inthe description above the normal to tbference_surfaceat the current pointis denotéd

6.4.36 swept_area_solid

Theswept_area_solidentity collects the entities which are defined procedurally by a sweeping action
on planar bounded surfaces. Theitios in space of the swept solid will be dependent upon the position
of theswept_area Theswept_areawill be a face of the resultingwept_area_solidexcept for the case

of arevolved_area_solidvith angle equal to 360 degrees.

EXPRESS specification

*
)
ENTITY swept_area_solid
SUPERTYPE OF (ONEOF(revolved_area_solid, extruded_area_solid,
surface_curve_swept_area_solid))
SUBTYPE OF (solid_model);
swept_area : curve_bounded_surface;
WHERE
WR1: 'GEOMETRY_SCHEMA.PLANE’ IN TYPEOF(swept_area.basis_surface);
END_ENTITY;

(*

Attribute definitions

swept_area: The curve_bounded_surfacedefining the area to be swept. The extent of this area is
defined by théoundariesattribute of the referencecuirve_bounded_surface

Formal propositions

WR1: The swept_areashall be planar. Théasis_surfaceattribute of thecurve_bounded_surface
referenced shall befane.

6.4.37 extruded_area_solid
An extruded_area_solidis a solid defined by sweeping a bounded planar surface. The direction of

translation is defined by direction vector, and the length of the translation is defined by a distance
depth. The planar area may have holes which will sweep into holes in the solid.

268 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY extruded_area_solid
SUBTYPE OF (swept_area_solid);
extruded_direction : direction;
depth . positive_length_measure;
WHERE
WR1: dot_product(
(SELF\swept_area_solid.swept_area.basis_surface\
elementary_surface.position.p[3]), extruded_direction) <> 0.0;
END_ENTITY;

(*

Attribute definitions

SELF\swept_area_solid.swept_areaThe bounded surface to be extruded to produce the solid.
extruded_direction: Thedirection in which the area is to be swept.

depth: The distance the area is to be swept.

Formal propositions

WR1: extruded_direction shall not be perpendicular to the normal to the plane obthept_area

6.4.38 revolved area_solid

A revolved_area_solids a solid formed by revolving a planar bounded surface about an axis. The axis
shall be in the plane of the surface and the axis shall not intersect the interior of the bounded surface. The
bounded surface may have holes which will sweep into holes in the solid. The direction of revolution is

clockwise when viewed along the axis in the positive direction. More precis@lyisfthe axis location

andd is the axis direction an@ is an arc on the surface of revolution generated by an arbitrary point

on the boundary of thewept_area thenC leavesp in directiond x (p — A) as the area is revolved.

EXPRESS specification

*
)
ENTITY revolved_area_solid
SUBTYPE OF (swept_area_solid);
axis : axisl_placement;
angle : plane_angle_measure;
DERIVE
axis_line : line := dummy_gri || curve() || line(axis.location,

(©ISO 2000 — All rights reserved 269

ISO 10303-42:2000(E)

dummy_gri || vector(axis.z, 1.0));
END_ENTITY;

(*

Attribute definitions

SELF\swept_area_solid.swept_areaThecurve_bounded_surfaceo be revolved to produce the solid.
axis: Axis about which revolution will take place.

angle: Angle through which the sweep will be made. This angle is measured from the plane of the
swept_area

axis_line: The line of the axis of revolution.

Informal propositions

IP1: axis_lineshall lie in plane obwept_areaattribute of theswept_area_solidsupertype.
IP2: Theaxis_lineshall not intersect the interior of ttssvept_area

IP3: angleshall lie in the rang®° < angle < 360°.

6.4.39 surface_curve_swept_area_solid

A surface_curve_swept_area_solits a type ofswept_area_solidwvhich is the result of sweeping a
face along alirectrix lying on areference_surface The orientation of thewept_areais related to the
direction of the surface normal.

Theswept_areais required to be aurve_bounded_surfacdying in the plane: = 0 and this is swept

along thddirectrix in such a way that the origin of the local coordinate system used to defisevdpt_-

areais on thedirectrix and the local X axis is in the direction of the normal to teerence_surfaceat

the current point. The resulting solid has the property that the cross section of the surface by the normal
plane to thalirectrix at any pointis a copy of thewept_area

The orientation of thewept_areaas it sweeps along thdirectrix is precisely defined by eartesian_-
transformation_operator_3d with attributes:

local_origin as point(0, 0, 0),

axislas the normaN to thereference_surfaceat the point of thelirectrix with parametew.

axis3as the direction of the tangent vectat the point of thalirectrix with parametet:.

The remaining attributes are defaulted to define a corresponding transformation Tatfixwhich
varies with thedirectrix parametet:.

NOTE 1- The geometric shape of the solid is not dependent upon the curve parametrisation; the volume
depends upon the area swept and the length dfiteetrix .

270 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

)
ENTITY surface_curve_swept_area_solid
SUBTYPE OF (swept_area_solid);

directrix . curve;

start_param . REAL,;

end_param . REAL;

reference_surface : surface;
WHERE

WR1 : (NOT (GEOMETRY_SCHEMA.SURFACE_CURVE’ IN TYPEOF(directrix))) OR
(reference_surface IN (directrix\surface_curve.basis_surface));
END_ENTITY;

(*

Attribute definitions

directrix: The curve used to define the sweeping operation. The solid is generated by sweeping the
SELF\swept_area_solid.swept_arealong thedirectrix .

start_param: The parameter value on tli&ectrix at which the sweeping operation commences.
end_param: The parameter value on tlkigectrix at which the sweeping operation ends.

reference_surface: The surface containing thirectrix .

Formal propositions

WR1: If thedirectrix is asurface curvethen thereference_surfaceshall be in thébasis_surfaceset
for this curve.

Informal propositions

IP1: Theswept_areashall lie in the plane = 0.
IP2: Thedirectrix shall lie on theeference_surface

NOTE 2 - Inthe description above the normal to tbference_surfaceat the current point is denotéd

6.4.40 trimmed_volume
A trimmed_volume is a solid_modelfor which the boundaries are the constant parameter surfaces

wy = ul,ug = u2,vy = vl,vy = v2,wy = wl, andws = w2, of thebasis_volume In the three
dimensional parameter space of thesis_volumehe domain of thérimmed_volume is a cuboid.

(©ISO 2000 — All rights reserved 271

ISO 10303-42:2000(E)

EXPRESS specification

)

ENTITY trimmed_volume
SUBTYPE OF (solid_model);
basis_volume : volume;

ul . parameter_value;

u2 . parameter_value;

vl . parameter_value;

v2 . parameter_value;

wil . parameter_value;

w2 . parameter_value;
WHERE

WR1 : ul <> uz;

WR2 : vl <> v2;

WR3 : wl <> w2;
END_ENTITY;

(*

Attribute definitions

basis_volume: The volume to be trimmed.
ul: The first value for the: parameter.

u2: The second value for theparameter.
v1: The first value for the parameter.

v2: The second value for theparameter
w1l: The first value for thev parameter.

w2: The first value for thev parameter.

Formal propositions

WR1: The two trimming values fou shall be distinct.
WR2: The two trimming values foe shall be distinct.

WR3: The two trimming values fow shall be distinct.

NOTE 1- Atrimmed_volume for which thebasis_volumeis not closed in any parameter direction will
satisfy the additional constraingg < u2,v1 < v2, wl < w2.

NOTE 2 - If thebasis_volumeis closed in one or more parameter directions and uses circular functions
(sine and cosine) in its definition the second value of a parameter may be less than the first value of that
parameter. This is interpreted as a periodic definition of a portion of the volume from the second parameter
boundary to the first including the ‘seam’ of the parameter value.

272 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXAMPLE 1 Ifrefcyl is a reference to eylindrical_volume then:

trimmed_volume(refcyl, 0.0, 0.5, 0.0, 1,0, 0.0, 1.0) defines a solid half cylinder whose vertical face is defined
by the plana: = 0.

trimmed_volume(refcyl, 0.875, 0.125, 0.0, 1.0, 0.9, 1.0) defines a quadrant of a cylindrical shell of thickness
(0.1 radius) centred om = 0. The trimming values for u are from 0.875 to 0.125 (equivalent to 1.125).

6.4.41 solid_replica

A solid_replicais a copy of another solid at a new location.

EXPRESS specification

%)
ENTITY solid_replica
SUBTYPE OF (solid_model);

parent_solid . solid_model,
transformation : cartesian_transformation_operator_3d;
WHERE

WR1: acyclic_solid_replica(SELF, parent_solid);
WR2: parent_solid\geometric_representation_item.dim = 3;
END_ENTITY;

(*

Attribute definitions

parent_solid: Solid model which is being copied to create guodid_replica.

transformation: A cartesian_transformation_operator_3dwhich defines the location and orientation
of thesolid_replicaand any associated scaling factor.

Formal propositions

WR1: A solid_replicashall not participate in its own definition.

WR2: Theparent_solidshall be of dimension 3.

6.4.42 shell _based surface model

A shell_based_surface_modés$ described by a set of open or closed shells of dimensionality 2. The
shells shall not intersect except at edges and vertices. In particular, distinct faces may not intersect. A
complete face of one shell may be shared with another shell. Coincident portions of shells shall both

reference the same faces, edges and vertices defining the coincident region.

There shall be at least oiséell.

(©ISO 2000 — All rights reserved 273

ISO 10303-42:2000(E)

A shellmay exist independently ofsurface_model

EXPRESS specification

*
)
ENTITY shell_based_surface_model
SUBTYPE OF (geometric_representation_item);
sbsm_boundary : SET [1:?] OF shell;
WHERE
WRZ1: constraints_geometry_shell _based_surface_model(SELF);
END_ENTITY;

(*

Attribute definitions

sbsm_boundary: The set ofshells which define theurface_model

Formal propositions

WR1: Theshells which make up thehell_based_surface_modshall be of typepen_shellorclosed_-
shellonly.

Informal propositions

IP1: The dimensionality of thehell_based_surface_modés 2.

IP2: Theshells shall not overlap or intersect except at comrfemes, edges orvertexs.

6.4.43 face based_ surface _model

A face_based_surface_modé& described by a set abnnected_face_setof dimensionality 2.
Theconnected_face_setshall not intersect except at edges and vertices, except fded ;n one con-
nected face set may overlagaxein another connected face set, provided the face boundaries are iden-
tical.

There shall be at least omennected face_set

A connected_face_seahay exist independently ofsurface_maodel

274 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY face_based_surface_model
SUBTYPE OF (geometric_representation_item);
fosm_faces : SET [1:?] OF connected_face_set;
END_ENTITY;

(*

Attribute definitions

fbsm_faces: The set ofconnected_face_sstcomprising théace based_surface_model

Informal propositions

IP1: Theconnected_face_setshall not overlap or intersect except at comrfames, edges orvertexs.

IP2: Thefbsm_faceshave dimensionality 2.

6.4.44 shell based wireframe_model

A shell_based_wireframe_modeis described by a graph of edges and vertices embeddgd.iThe

graph may be disconnected. Within the graph the edges do not intersect except at their boundaries (i.e.,

vertices).

The geometry associated with a vertex shall be consistent with the geometry associated with any of the
edges of which the vertex forms a boundary.

A shell_based_wireframe_modeik represented by one or mabkellsof dimensionality O or 1.
There shall be at least oséell.

A shellmay exist independently ofireframe_model.

EXPRESS specification

*
)
ENTITY shell_based_wireframe_model
SUBTYPE OF (geometric_representation_item);
sbwm_boundary : SET [1:?] OF shell;
WHERE
WRZ1: constraints_geometry_shell _based_wireframe_model(SELF);
END_ENTITY;

(©ISO 2000 — All rights reserved 275

ISO 10303-42:2000(E)

(*

Attribute definitions

sbwm_boundary: The set ofvertex_shelk and/owire_shells comprising the
wireframe_maodel.

Formal propositions

WR1: Eachshellshall be either of typgertex_shellor wire_shell. The function
constraints_geometry_shell_based_wireframe_modedturns TRUE, where the function evaluates these
geometric constraints and finds them satisfied.

Informal propositions

IP1: The dimensionality osbwm_boundaryis less than 2.

IP2: Theshell_based_wireframe_modehas positive and finite extent.

IP3: Theshells shall not overlap or intersect except at comradges orvertexs.

6.4.45 edge based_wireframe_model

An edge_based_wireframe_modes described by a graph of edges and vertices embeddgdl ifihe

graph may be disconnected. Within the graph the edges do not intersect except at their boundaries (i.e.,

vertices).

The geometry associated with a vertex shall be consistent with the geometry associated with any of the
edges of which the vertex forms a boundary.

An edge_based_wireframe_modeés$ represented by one or mazennected_edge_setof dimension-
ality 1.

There shall be at least owennected_edge_set

A connected_edge_sehay exist independently ofwireframe_maodel.

EXPRESS specification

%)
ENTITY edge_based_wireframe_model
SUBTYPE OF (geometric_representation_item);

276 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

ebwm_boundary : SET [1:?] OF connected_edge_set;
END_ENTITY;

(*

Attribute definitions

ebwm_boundary: The set ofconnected_edge_sgtcomprising thedge_based_wireframe_model

Informal propositions

IP1: The dimensionality oédge_based_wireframe_modés 1.

IP2: Theconnected_edge_setshall not overlap or intersect except at comradges orvertexs.

6.4.46 geometric_set

This entity is intended for the transfer of models when a topological structure is not available.

EXPRESS specification

*

)

ENTITY geometric_set
SUPERTYPE OF (ONEOF(geometric_curve_set,

geometric_set_replica))

SUBTYPE OF (geometric_representation_item);
elements : SET [1:?] OF geometric_set_select;

END_ENTITY;

(*

Attribute definitions

elements: The geometric elements which make up gemmetric_set these may beoints, curves or
surfaces; but are required to be of the same coordinate space dimensionality.

6.4.47 geometric_curve_set

A geometric_curve_sets a collection of two- or three-dimensior@bints andcurves.

(©ISO 2000 — All rights reserved 277

ISO 10303-42:2000(E)

EXPRESS specification

*
)
ENTITY geometric_curve_set
SUBTYPE OF (geometric_set);
WHERE
WR1: SIZEOF(QUERY(temp <* SELF\geometric_set.elements |
'GEOMETRY_SCHEMA.SURFACE’ IN TYPEOF(temp))) = 0;
END_ENTITY;

(*

Attribute definitions

SELF\geometric_set.elementsThe elements included in this geometric set.

Formal propositions

WR1: No surface shall be included in this geometric set.

6.4.48 sectioned_spine
A sectioned_spinds a representation of the shape of a three dimensional object composed of a spine
curve and a number of planaross_sectionsThe shape is defined between the first elemectags_-

sectionsand the last element of this set.

NOTE - Asectioned_spinanay be used to represent a surface or a solid but the interpolation of the shape
between the cross-sections is not defined. For the representation of a solid all cross-sections are closed curves.

EXPRESS specification

%)
ENTITY sectioned_spine
SUBTYPE OF (geometric_curve_set);

cross_sections . LIST[2:?] OF curve;
spine_points : LIST[2:?] OF point;
WHERE

WR1 : SIZEOF(SELF\geometric_set.elements) = 1;
WR2 : '"GEOMETRY_SCHEMA.CURVE’ IN
TYPEOF(SELF\geometric_set.elements[1]);
WR3 : SIZEOF(cross_sections) = SIZEOF(spine_points);
WR4 : SELF\geometric_representation_item.dim = 3;
END_ENTITY;

(*

278 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Attribute definitions

SELF\geometric_set.elementsThe set, containing a single curve, that defines the spine.

cross_sections:The set of 2 or more planar cross-sections. Each cross-section is defined in its correct
location relative to the spine curve.

spine_points: The set of points on the spine, each point lies in the plane of the corresponding cross-
section.

Formal propositions

WR1: The[elements] set shall contain a single item.
WR2: The item in thdelements] set shall be a curve. This is the spine curve fosebgoned_spine
WR3: The set ofcross_sectionand the set o§pine_pointsshall be of the same size.

WRA4: The space dimensionality of tlsectioned_spineshall be 3.

Informal propositions

IP1: Each curve in theross_sectionset shall be a planar curve.

IP2: Each pointin thepine_pointsset shall lie in the plane of the corresponding curve froncthes_-
sections

6.4.49 geometric_set_replica
This entity defines a replica ofgeometric_setn a different location. Each element of the set is trans-

formed by the sam&ansformation which may include scaling. The type of set produced will corre-
spond to that of thparent_set

EXPRESS specification

)
ENTITY geometric_set_replica
SUBTYPE OF (geometric_set);

parent_set . geometric_set;
transformation : cartesian_transformation_operator;
DERIVE

SELF\geometric_set.elements : SET [1:?] OF geometric_set_select :=
build_transformed_set(transformation, parent_set);
WHERE
WR1: acyclic_set_replica(SELF, parent_set);
END_ENTITY;
(*

(©ISO 2000 — All rights reserved 279

ISO 10303-42:2000(E)

Attribute definitions

parent_set: geometric_setvhich is being copied to create tgeometric_set_replica

transformation: Cartesian transformation operator which defines the location and orientation of the
geometric_set_replica

SELF\geometric_set.elementsThe set of elements resulting from the transformation oféent_-
set

Formal propositions

WR1: A geometric_set_replicashall not participate in its own definition.

6.5 Geometric model function definitions

6.5.1 acyclic_solid_replica

Theacyclic_solid_replicaboolean function is a recursive function which determines whether, or not, a
givensolid_replica participates in its own definition. The function returns FALSE if sodid_replica
refers to itself, directly or indirectly, in its own definition.

EXPRESS specification

*
)
FUNCTION acyclic_solid_replica(rep : solid_replica; parent :
solid_model) : BOOLEAN;
IF NOT ((GEOMETRY_SCHEMA.SOLID_REPLICA’) IN TYPEOF(parent)) THEN
RETURN (TRUE);
END_IF;
(* Return TRUE if the parent is not of type solid_replica. *)
IF (parent :=: rep) THEN
RETURN (FALSE);
(* Return FALSE if the parent is the same solid_replica, otherwise,
call function again with the parents own parent_solid. *)
ELSE RETURN(acyclic_solid_replica(rep,
parent\solid_replica.parent_solid));
END_IF;
END_FUNCTION;
(*

280 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Argument definitions

rep: (input) Thesolid_replicawhich is to be tested for a cyclic reference.
parent: (input) A solid_modelused in the definition of the replica.

result: (output) A BOOLEAN variable which is FALSE tiep is used in its own definition.

6.5.2 acyclic_set replica

The acyclic_set_replicaboolean function is a recursive function which determines whether, or not, a
givengeometric_set_replicgparticipates in its own definition. The function returns FALSE if fe®-
metric_set_replicarefers to itself, directly or indirectly, in its own definition.

EXPRESS specification

*
)
FUNCTION acyclic_set_replica(rep : geometric_set replica;
parent : geometric_set) : BOOLEAN;
IF NOT ((GEOMETRY_SCHEMA.GEOMETRIC_SET_REPLICA’) IN TYPEOF(parent))
THEN RETURN (TRUE);
END_IF;
(* Return TRUE if the parent is not of type geometric_set replica *)
IF (parent :=: rep) THEN
RETURN (FALSE);
(* Return FALSE if the parent is the same geometric_set replica,
otherwise, call function again with the parents own parent_set. *)
ELSE RETURN(acyclic_set_replica(rep,
parent\geometric_set_replica.parent_set));
END_IF;
END_FUNCTION;
(*

Argument definitions

rep: (input) Thegeometric_set_replicawvhich is to be tested for a cyclic reference.
parent: (input) A geometric_setused in the definition of the replica.

result: (output) A BOOLEAN variable which is FALSE tiep is used in its own definition.

6.5.3 constraints_geometry_shell _based surface_model

This function evaluates the geometric constraints shedl_based_surface_modeind returns TRUE if
they are satisfied.

(©ISO 2000 — All rights reserved 281

ISO 10303-42:2000(E)

EXPRESS specification

)
FUNCTION constraints_geometry_shell_based_surface_model
(m: shell_based_surface_model): BOOLEAN;

LOCAL
result : BOOLEAN := TRUE;
END_LOCAL;
REPEAT j := 1 TO SIZEOF(m.sbsm_boundary);

IF (NOT (TOPOLOGY_SCHEMA.OPEN_SHELL’ IN
TYPEOF(m.sbsm_boundary[j])) AND
(NOT (TOPOLOGY_SCHEMA.CLOSED_SHELL’ IN
TYPEOF(m.sbsm_boundary[j]))))
THEN
result := FALSE;
RETURN(result);
(* A surface model is composed of OPEN_ and CLOSED_ SHELLs. *)
END_IF;
END_REPEAT,
RETURN(result);
END_FUNCTION;

(*

Argument definitions

m: (input) Theshell_based_surface_moddbr which the geometric constraints are to be checked.

result: (output) A BOOLEAN variable which is TRUE if the boundary of is made up entirely of
open_shek andclosed_shel.

6.5.4 constraints_geometry_shell based_ wireframe_model

This function evaluates the geometric constraintssimadl_based_wireframe_modednd returns TRUE
if they are satisfied.

EXPRESS specification

)
FUNCTION constraints_geometry_shell_based_wireframe_model
(m : shell_based_wireframe_model) : BOOLEAN;

LOCAL
result : BOOLEAN := TRUE;
END_LOCAL;
REPEAT j := 1 TO SIZEOF(m.sbwm_boundary);

282 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

IF (NOT (TOPOLOGY_SCHEMA.WIRE_SHELL' IN
TYPEOF(m.sbwm_boundary[j])) AND
(NOT (TOPOLOGY_SCHEMA.WVERTEX_SHELL’ IN

TYPEOF(m.sbwm_boundary[j]))))
THEN

result := FALSE;
RETURN(result);
(* A wireframe model is composed of WIRE_ and VERTEX_ SHELLs *)
END_IF;
END_REPEAT,
RETURN(result);
END_FUNCTION;

(*

Argument definitions

m: (input) Theshell_based_wireframe_modeior which the geometric constraints are to be checked.

result: (output) A BOOLEAN variable which is TRUE if the boundary of is made up entirely of
wire_shells andvertex_shelk.

6.5.5 build_transformed_set

Given acartesian_transformation_operatorand ageometric_sethis function builds the transformed
set by applying the transformation to the individual curve, point or surface elements of the input set.

EXPRESS specification

)
FUNCTION build_transformed_set(tr: cartesian_transformation_operator;
gset : geometric_set) : SET [0:?] OF geometric_set_select;

LOCAL

S . SET [1:?] OF geometric_set_select := gset.elements;
trset : SET [0:?] OF geometric_set_select := [];
END_LOCAL;

REPEAT j := 1 TO SIZEOF(s);

IF (GEOMETRY_SCHEMA.CURVE’ IN TYPEOF(s[j])) THEN
trset := trset + curve_replica(s[j],tr); ELSE
IF (GEOMETRY_SCHEMA.POINT" IN TYPEOF(s[j])) THEN
trset := trset + point_replica(s[j],tr); ELSE
IF (GEOMETRY_SCHEMA.SURFACE’ IN TYPEOF(s[j])) THEN
trset := trset + surface_replica(s[j],
tr || cartesian_transformation_operator_3d (?));
END_IF;
END_IF;
END_IF;
END_REPEAT,

(©ISO 2000 — All rights reserved 283

ISO 10303-42:2000(E)

RETURN(trset);
END_FUNCTION;

(*

Argument definitions

tr: (input) Thecartesian_transformation_operatordefining the transformation.
gset: (input) The geometric set to be transformed.

trset: (output) The resulting transformed set.

6.5.6 msb_shells

This function determines the set of albsed_sheb used in the definition of manifold_solid_brep.
Special provision is made for thmep_with_voids subtype.

EXPRESS specification

*)
FUNCTION msb_shells (brep: manifold_solid_brep) :
SET [1:?] OF closed_shell,

IF SIZEOF (QUERY (msbtype <* TYPEOF (brep) |
msbtype LIKE *BREP_WITH_VOIDS’)) >= 1 THEN
RETURN (brep\brep_with_voids.voids + brep.outer);

ELSE
RETURN([brep.outer]);

END_IF;

END_FUNCTION;
(*

Argument definitions

brep: (input) A manifold_solid_brepfor which a set otlosed_sheltomponents is required.

result: (output) A SET of all theclosed_sheb used to definbrep.

EXPRESS specification

*)
END_SCHEMA; -- end GEOMETRIC MODEL schema
(*

284 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

(©ISO 2000 — All rights reserved 285

ISO 10303-42:2000(E)

Annex A
(normative)

Short names of entities

Table A.1 provides the short names of entities specified in this part of ISO 10303. Requirements on the
use of short names are found in the implementation methods included in ISO 10303.

Table A.1 — Short names of entities

Entity names Short names

AXIS1 PLACEMENT AX1PLC
AXIS2 _PLACEMENT_ 2D A2PL2D
AXIS2_PLACEMENT 3D A2PL3D
BEZIER_CURVE BZRCRV
BEZIER_SURFACE BZRSRF
BEZIER_VOLUME BZRVLM
BLOCK BLOCK
BLOCK_ VOLUME BLCVLM
BOOLEAN_RESULT BLNRSL
BOUNDARY_CURVE BNDCR
BOUNDED_CURVE BNDCRV
BOUNDED_ PCURVE BNDPCR
BOUNDED_SURFACE BNDSRF
BOUNDED_SURFACE_CURVE BNSRCR
BOXED_HALF_SPACE BXHLSP
BOX_DOMAIN BXDMN
BREP_WITH_VOIDS BRWTVD
BREP_2D BREP2D
B_SPLINE_CURVE BSPCR
B_SPLINE_CURVE_WITH_KNOTS BSCWK

286 ©ISO 2000 — All rights reserved

Table A.1 — (continued)

ISO 10303-42:2000(E)

Entity names

Short names

B_SPLINE_SURFACE BSPSR
B_SPLINE_SURFACE_WITH_KNOTS BSSWK
B_SPLINE_VOLUME BSPVL
B_SPLINE_VOLUME_WITH_KNOTS BSVWK
CARTESIAN_POINT CRTPNT
CARTESIAN_TRANSFORMATION_OPERATOR | CRTROP

CARTESIAN_TRANSFORMATION_OPERATOR_2[) CTO2

CARTESIAN_TRANSFORMATION_OPERATOR_3[) CTO3
CIRCLE CIRCLE
CIRCULAR_AREA CRCAR
CLOSED_SHELL CLSSHL
CLOTHOID CLTHD
COMPOSITE_CURVE CMPCRV
COMPOSITE_CURVE_ON_SURFACE Ccos
COMPOSITE_CURVE_SEGMENT CMCRSG
CONIC CONIC
CONICAL_SURFACE CNCSRF
CONNECTED_EDGE_SET CNEDST
CONNECTED_FACE_SET CNFCST
CONNECTED_FACE_SUB_SET CFSS
CONVEX_HEXAHEDRON CNVHXH
CSG_SOLID CSGSLD
CURVE CURVE
CURVE_BOUNDED_SURFACE CRBNSR
CURVE_REPLICA CRVRPL

(©ISO 2000 — All rights reserved

287

ISO 10303-42:2000(E)

288

Table A.1 — (continued)

Entity names Short names
CYCLIDE_SOLID_SEGEMENT CYSLSG
CYLINDRICAL_POINT CYLPNT
CYLINDRICAL_SURFACE CYLSRF
CYLINDRICAL_VOLUME CYLVLM
DEGENERATE_PCURVE DGNPCR
DEGENERATE_TOROIDAL_SURFACE| DGTRSR
DIRECTION DRCTN
DUPIN_CYCLIDE_SURFACE DPCYSR
ECCENTRIC_CONE ECCCN
ECCENTRIC_CONICAL_VOLUME ECCNVL
EDGE EDGE
EDGE_BASED_WIREFRAME_MODEL| EBWM
EDGE_CURVE EDGCRV
EDGE_LOOP EDGLP
ELEMENTARY_SURFACE ELMSRF
ELLIPSE ELLPS
ELLIPSOID ELLPSD
ELLIPSOID_VOLUME ELLVLM
ELLIPTIC_AREA ELLAR
EVALUATED_DEGENERATE_PCURVE EVDGPC
EXTRUDED_AREA_SOLID EXARSL
EXTRUDED_FACE_SOLID EXFCSL
FACE FACE

(©ISO 2000 — All rights reserved

Table A.1 — (continued)

ISO 10303-42:2000(E)

Entity names

Short names

FACETED_BREP FCTBR
FACETED_PRIMITIVE FCTPRM
FACE_BASED_SURFACE_MODEL FBSM
FACE_BOUND FCBND
FACE_OUTER_BOUND FCOTBN
FACE_SURFACE FCSRF
FIXED_REFERENCE_SWEPT_SURFACE | FRSS
GEOMETRIC_CURVE_SET GMCRST
GEOMETRIC_REPRESENTATION_CONTEXT GMRPCN
GEOMETRIC_REPRESENTATION_ITEM GMRPIT
GEOMETRIC_SET GMTST
GEOMETRIC_SET_REPLICA GMSTRP
HALF_SPACE_SOLID HLSPSL
HALF_SPACE_2D HLSP2D
HEXAHEDRON_VOLUME HXHVLM
HYPERBOLA HYPRBL
INTERSECTION_CURVE INTCRV
LINE LINE
LOOP LOOP
MANIFOLD_SOLID_BREP MNSLBR
OFFSET_CURVE_2D OFCR2D
OFFSET_CURVE_3D OFCR3D
OFFSET_SURFACE OFFSRF
OPEN_PATH OPNPTH
OPEN_SHELL OPNSHL

(©ISO 2000 — All rights reserved

289

ISO 10303-42:2000(E)

290

Table A.1 — (continued)

Entity names

Short names

ORIENTED_CLOSED_SHELL| ORCLSH
ORIENTED_EDGE ORNEDG
ORIENTED_FACE ORNFC
ORIENTED_OPEN_SHELL OROPSH
ORIENTED_PATH ORNPTH
ORIENTED_SURFACE ORNSRF
OUTER_BOUNDARY_CURVE| OTBNCR
PARABOLA PRBL
PATH PATH
PCURVE PCURVE
PLACEMENT PLCMNT
PLANE PLANE
POINT POINT
POINT_IN_VOLUME PNINVL
POINT_ON_CURVE PNONCR
POINT_ON_SURFACE PNONSR
POINT_REPLICA PNTRPL
POLAR_POINT PLRPNT
POLYGONAL_AREA PLYAR
POLYLINE PLYLN
POLY_LOOP PLYLP
PRIMITIVE_2D PRM2D
PYRAMID_VOLUME PRYVLM
QUASI_UNIFORM_CURVE QSUNCR
QUASI_UNIFORM_SURFACE | QSUNSR
QUASI_UNIFORM_VOLUME | QSUNSR

(©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Table A.1 — (continued)

Entity names Short names
RATIONAL_B_SPLINE_CURVE RBSC
RATIONAL_B_SPLINE_SURFACE RBSS
RATIONAL_B_SPLINE_VOLUME RBSV
RECTANGLE_DOMAIN RCTDMN
RECTANGLED_HALF_SPACE RCHLSP
RECTANGULAR_AREA RCTAR
RECTANGULAR_COMPOSITE_SURFACE RCCMSR
RECTANGULAR_PYRAMID RCTPYR
RECTANGULAR_TRIMMED_SURFACE RCTRSR

REPARAMETRISED_COMPOSITE_CURVE_SEGMENTRCCS

REVOLVED_AREA_SOLID RVARSL
REVOLVED_FACE_SOLID RVFCSL
RIGHT_ANGULAR_WEDGE RGANWD
RIGHT_CIRCULAR_CONE RGCRCN
RIGHT_CIRCULAR_CYLINDER RGCRCY
SEAM_CURVE SMCRV
SECTIONED_SPINE SCTSPN
SHELL_BASED_SURFACE_MODEL SBSM
SHELL_BASED_WIREFRAME_MODEL SBWM
SOLID_MODEL SLDMDL
SOLID_REPLICA SLDRPL
SPHERE SPHERE
SPHERICAL_POINT SPHPNT
SPHERICAL_SURFACE SPHSRF
SPHERICAL_VOLUME SPHVLM

(©ISO 2000 — All rights reserved 291

ISO 10303-42:2000(E)

292

Table A.1 — (continued)

Entity names Short names
SUBEDGE SBDG
SUBFACE SBFC
SURFACE SRFC
SURFACE_CURVE SRFCRV
SURFACE_CURVE_SWEPT_AREA_SOLIO SCSAS
SURFACE_CURVE_SWEPT_FACE_SOLID| SCSFS
SURFACE_CURVE_SWEPT_SURFACE SCSS
SURFACE_OF_LINEAR_EXTRUSION SL
SURFACE_OF_REVOLUTION SROFRV
SURFACE_PATCH SRFPTC
SURFACE_REPLICA SRFRPL
SWEPT_AREA_SOLID SWARSL
SWEPT_FACE_SOLID SWFCSL
SWEPT_SURFACE SWPSRF
TETRAHEDRON TTRHDR
TETRAHEDRON_VOLUME TTRVLM
TOPOLOGICAL_REPRESENTATION_ITEM TPRPIT
TOROIDAL_SURFACE TRDSRF
TOROIDAL_VOLUME TRDVLM
TORUS TORUS
TRIMMED_CURVE TRMCRV
TRIMMED_VOLUME TRMVLM

(©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Table A.1 — (concluded)

Entity names Short names

UNIFORM_CURVE UNFCRV

UNIFORM_SURFACE| UNFSRF

UNIFORM_VOLUME | UNFVLM

VECTOR VECTOR
VERTEX VERTEX
VERTEX_LOOP VRTLP
VERTEX_POINT VRTPNT
VERTEX_SHELL VRTSHL
VOLUME VOLUME

WEDGE_VOLUME WDGVLM

WIRE_SHELL WRSHL

(©ISO 2000 — All rights reserved 293

ISO 10303-42:2000(E)

Annex B
(normative)

Information object registration

B.1 Document identification

To provide for unambiguous identification of an information object in an open system, the object identi-
fier

{ iso standard 10303 part(42) version(4) }

is assigned to this part of ISO 10303. The meaning of this value is defined in ISO/IEC 8824-1, and is
described in 1ISO 10303-1.

B.2 Schema identification

To provide for unambiguous identification of the geometry_schema in an open information system, the
object identifier

{iiso standard 10303 part(42) version(4) object(1) geometry-schema(l) }

is assignedto the geometry_schema (see clause 4). The meaning of this value is defined in ISO/IEC 8824-
1, and is described in ISO 10303-1.

To provide for unambiguous identification of the topology_schema in an open information system, the
object identifier

{iiso standard 10303 part(42) version(4) object(1) topology-schema(2) }

is assigned to the topology_schema (see clause 5). The meaning of this value is defined in ISO/IEC 8824-
1, and is described in ISO 10303-1.

To provide for unambiguous identification of the geometric_model_schema in an open information sys-
tem, the object identifier

{iso standard 10303 part(42) version(4) object(1) geometric-model-schema(3) }

is assigned to the geometric_model_schema (see clause 6). The meaning of this value is defined in
ISO/IEC 8824-1, and is described in ISO 10303-1.

294 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Annex C
(informative)

Computer-interpretable listings

This annex provides a listing of the EXPRESS entity names and corresponding short names as speci-
fied in this Part of ISO 10303 without comments or other explanatory text. This annex is aavailable in
computer-interpretable form and can be found at the following URLSs:

Short names: http://www.mel.nist.gov/div826/subject/apde/snr/
EXPRESS: http://www.mel.nist.gov/step/parts/part042e2/is/

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO TC 184/SC4
Secretariat directly at: sc4sec@cme.nist.gov.

NOTE - - The information provided in computer-interpretable form at the above URLSs is informative. The
information that is contained in the body of this part of ISO 10303 is hormative.

(©ISO 2000 — All rights reserved 295

ISO 10303-42:2000(E)

Annex D
(informative)

EXPRESS-G diagrams

Figures D.1 through D.20 correspond to the EXPRESS given in annex C. The diagrams use the EXPRESS-
G graphical notation for the EXPRESS language. EXPRESS-G is defined in annex D of ISO 10303-11.

296 (©ISO 2000 — All rights reserved

geometric_model.

| |
! (geometric_set)
L>——————————————— J

geometric_model. !
edge_based_wireframe_model

geometric_model.

|
shelI_based_wireframe_modeDJ

ISO 10303-42:2000(E)

2,10 direction

2,7 vector

2,8 placement

2,3 cartesian_
transformation_operator

A ANY AN AN AU A,

' geometric_model. !
'L face_based_surface_model JC —(4,1 curve
R (
geometric_model. . L 5,2 surface
'LC shell_based_surface_model |
[——=—=—======= 1 — 3,1 point
geometric_model.
! (half_space_solid
L= —(13,1 volume
! geometric_model. S
'L cyclide_segment_solid JC ' (topology.) !
————————————— a |
_______________ edge_curve
! geometric_model. pl L==== :g:_: ====--1
! rectangular_pyramid | topology. !
=== ==-==== . — face surféce '
: geometric_model. - e e i e ety
! eccentric_cone ! topology. !
L >———] E—s |
F=========== q poly_loop
| geometric_model. L———————— J
______ ellipsoid [|
r L ee=——— | topology.
: represen:att'lo.l geometric QL vertex_point J'
p—C T e T e —
| repreifee;alon | representation_item 1 e Y
——— D e === = = = = — = geometric_model.
:— geometric_model. ' — half_space_2d !
L facete{i_primitive /| I: - - - - - = === === 4
P — - — = N L ! geometric_model. !
| /Tepresentation, | ! geometric_model. lp—_o primitive_2d)'
Il representation] | ! right_circular_cylinder L=
| context | :: — - - =—=—=—=—==== 4| | geometric_model. :
il Tl N geometric_model. — solid model
l L(torus | - --—-—-—-—---"
geometric_ P == :o?ne:triz r?oiielz == : geometric_model. !
representation_| , g — ' O— > boolean_result !
context . block] L — j
I e e—— T odel N\ ! eometric_model. !
geometric_model. I 9 Uric_)l
|L (right_angular_wedge Jp_] right_circular_cone]

Figure D.1 — Geometry_schema EXPRESS-G diagram 1 of 13

(©ISO 2000 — All rights reserved

297

ISO 10303-42:2000(E)

2,8(1) placement

location
32
cartesian_
point
2,2 (5) 1
l (26() (25 (6,10,1§l
axisl_ axis2_ axis2_
placement placement_2d placement_3(
p
z A pL[2:2[[+ ref_ ref_ L3
(421:2) (DER) iaX|s (DER) idirection directioni iaX|s ([[)3;:_':;])
S

representation: . I
vector functionally_ cartesian_ " gcale- 5 !
defined transformation | |
- operator | |
transformatio (DER) scl |
magnitud | 1 axis 3,
orientation| direction cartesian_ cartesian_ i
o transformation_ transformation_ { -+
direction T operator_2d operator_3d
ratios
L[2: .
[2:3] (DER) (DER) u L[3:3]
(4.5) uL[2:2] 2,4 (5D

Figure D.2 — Geometry_schema EXPRESS-G diagram 2 of 13

298 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

coordinates L[2:2?

— _ +——Opoint_parameter_u
p0|Tt_|n_ ——O point_parameter_v
35 volume | point_parameter w point
(2,4,8,9,12,13 [T parent_pt
J” J” J” basis_ J”
cartesian | point_on_ point_on_| surface point_
point curve surface replica
point_ point_
coordinate basis paramete parameter transformation
L [1:3] curve: -u _v
point_ 51 2,3 cartesian_
4,3 parameter surface transformation_
curve operator
evaluated__
degeneratey, |
pcurve degglr}revrgte_
equivalent point basis_ reference
r surface to_curve
A = —— 51
cylindrical '
L ovindrical; theta (surface) ——————— |
point 7 representation:
l O DER '[definitional_ |’
r coordinates L[3:3? '__representation”
. L - - — - — = — I
spherlcal_ thgta ::
- point | phi
| — 0 DER
coordinates L[3:3?
r
polar_ ©
DER

Figure D.3 — Geometry_schema EXPRESS-G diagram 3 of 13

(©ISO 2000 — All rights reserved

299

ISO 10303-42:2000(E)

8,1
bounded_
curve

curve
@ (4,3 (3,5,7@3—6
1
6.1 suég
. : ce
line conic curve ~
dir
irection
vector 4,4(7.8)
3.2 . distance ref
cartesian . L
_point distanc direction
pcurve offset_ offset_ curve_
curve_2D curve_3D replica
basis_ reference
surface to_curve inﬁ:ﬁ_ .
_______ SeClelf transformatior
51 (_ fepresentation>, | intersec
surface | definitional_ 2,3
representation cartesian_
——————— basis curve transformation
- operator
] basis_curve parent_curve
clothoid
clothoid
constant position
6,2
axis2_
lacemen

Figure D.4 — Geometry_schema EXPRESS-G diagram 4 of 13

300

(©ISO 2000 — All rights reserved

(52(1))

Lo

oriented_
surface

orientation

ISO 10303-42:2000(E)

idistanceiself_i ntersect

basis_surface
— 5.1 surface
parent_surface
1
J, swept_ J,
10,1 curve 11,1
| | offset_ elementary swept_ bounded_ surface_
surface surface surface surface replica

transformatio¢

2,4 cartesiany
1 transformation
* * operator_3d
directrix
STirrtzgf—Of surface_of : .
extrusion revolution directrix
_ = fixed_reference
extrusion axis axis_ axis_line swept_surface
- osition DER]
P () fixed_
referenceg
2,2
2,7 - 4,2 2,1
veétor axisl_ line direction
placement

surface_curve_

swept_surface

reference_surface

Figure D.5 — Geometry_schema EXPRESS-G diagram 5 of 13

(©ISO 2000 — All rights reserved

301

ISO 10303-42:2000(E)

O RN
. position ; , axis2_ |
conic ' ' placement

& 1 2
circle ellipse parabola hyperbola
semi_
radius semi_axis_1 semi_axis_2 focal_dist semi_axi imag_
axis
e} o)

Figure D.6 — Geometry_schema EXPRESS-G diagram 6 of 13

302 ©ISO 2000 — All rights reserved

3

ISO 10303-42:2000(E)

' curve_on'!
' surface !

4,4 pcurv@
(DER

basis_surface

4,3 curve_3d
curve

surface

curve

associated

geometry
L[1:2]
' pcurve_or!

' surface !

(4,4 pcurv@

8,3

-

bounded_
surface curve

representatio
L

LI___‘__I

composite_curve
on_surface
51

Q
surface

master_
representation

“preferred_ T}
surface_curve

H’ |

l

intersection |
curve

!

seam_
curve

Figure D.7 — Geometry_schema EXPRESS-G diagram 7 of 13

(©ISO 2000 — All rights reserved

303

ISO 10303-42:2000(E)

4,4

bounded_ 8,1 (4) bounded_ bounded_
surface_curve curve pcurve
T 1 T | fepresentation!
"\ founded_item'
L>———=—1
l l l segments £
L[1:7]

. " . composite
; trimmed b_spline_ composite (INV) —
polyline — — usina curves Curve_
curve curve curve 9_ segment
points trim_1 trim_2 basis_curven_segments same_tsens?
L[2:7] S[1:2] S[1:2] (DER) self ransitio
>~ — _itransition:
32 OO, InterseCt:L___Pf)g_e_ﬁ
cartesian_ i 1 trimming_, closed curv parent |
[o | — curve
point | select master_ (DER)
sense_ & representation cﬁ’r:\g/e
agreement I i -
o 'trimming_! | (5,1 composite_
' preference | \ surfacebasis _| Cgm?a?:g_ 8,2(7)
bo------ L+ surfac
(DER)
11,2
boundary
o curve
cartesian_ | p?r%ﬁg{gr' : reparametrised]
point | value .D param_length composite_
——————————————— - curve_segment

Figure D.8 — Geometry_schema EXPRESS-G diagram 8 of 13

304 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

upper_index
on_control

OM curve form | b_spline_ "

I

(]

curve_ : :
(]

closed curve

e e D m -

b_spline_curve

O——F——
self intersect cartesian_

degree points point
| listL[2:7]
weights (DER)
data L[2:7?]] control_points A[O:u]
O——— rational_
b_spline

07

(DER) curve

weights A[O:u]

1
knot_ l l l l
multiplicities
L[Zo] bEERIIgG— uniform quaSi— bezier
O— _ - uniform —
with_knots curve curve cune
(DER)

upper_inde E[go},‘i’ knot_spec

on_knots a

- — — T

: knot_type : :

Figure D.9 — Geometry_schema EXPRESS-G diagram 9 of 13

(©ISO 2000 — All rights reserved 305

ISO 10303-42:2000(E)

o 25
101) elementary_[POSIion/ . io5
surface placement_3d
1
toroidal_
surface
major_ minor_
radius radius
Q Q Q
plane dupin_cyclide_ conical_ spherical_ cylindrical_
surface surface surface
surface degenerate|
] _ _ . toroidal_
genera”sed S ml_angl radius radius radius surface
major_radiu
generalised select_outer
minor_radiug
skewness

Figure D.10 — Geometry_schema EXPRESS-G diagram 10 of 13

306 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

parent_surface | ‘tepresentation!
11,1 (@—C bounded_ \ founded_itern'
surface L J

u_sens? l T v_sense

transition; ,U=transition | surface_
_code ' | patch

V_transition

usens vsense

JW basis_ basis_, (L

(INV)

12,1

rectangularl g face surfaca , CUVe- b spline rectangular] sing_suraces
rimmed_ bourded surface COMPOSIte [eoq ments L[1:?] OF L[1:?]
surface surface surface surface g o o
ulju2 boundaries
vi| |v2 implicit_outer | S[1:?] n_u n_v

51
surface

DER (DER)
boundary |

outer_

boundary |
curve

Figure D.11 — Geometry_schema EXPRESS-G diagram 11 of 13

(©ISO 2000 — All rights reserved 307

ISO 10303-42:2000(E)

3.2
12,1 (11) cartesian (DER) control_points
_point A[O:u_upper] OF

control_points_list A[O:v_upper]
L[2:?] OF L[2:?]

uclosed = ¢ HedUPUHed] o oo R
' b_spline_
v_closed —— O surface_ !
= surface_form form 1
- b_spline_surface | .
self intersect - -
(DER) u_upper w@
o—
oO—
(DER) v_upper T v_degree
weights_data l
L[2:?] OF L[2:?] X
O——— rational_
b_spline_
weights surface
A[O:u_upper] OF
A[O:v_upper] (DER)
1
u_knots
’ (DER) [2:7]
not_u_upper : ———O .
© b_spline_ "V Knots © uniform_ quasl_ bezier_
O0———— surface_ |V_ surface uniform_ surface
(DER) with_knots | L[2:7] surface
knot_v_upp
v_multiplicities
u_multiplicitie L[2:7] knot_spec
L[2:7] -
r— - -1
| knot_type | |
L — — _ 1

Figure D.12 — Geometry_schema EXPRESS-G diagram 12 of 13

308 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

radiu%

(Lheight

13,1 (1) (13,2 (3)
hexahedron, () ()
volume l i
point_1 points L[8:8]
point_2 | 1 volume
tetrahedron | POINT_3 / 3,2
— volume point_4 \ cartesian_point
ramid ——O height ?u_degree
—q Y - b_spline
volume volume
xlength osition
g<£ (gylength P (Ldv_ <Lw_degret—:
| egree
insoid O semi_axis_1 iti control_points
— elllp?smd_ semi—axis—2 position IistLTg"?] 1
Volume | osemi_axis_3 25 OF L[2.:.?]
axis2_phcement_3 OF L[2:7]
- spherical_| centre 32 .
artesian poi
volume radins <
bezier 1
X — O ——
—y—0 volume
. block_ 7 &
volume |
| posﬁilon l 2,5 uniform
osition i _
: p " axis2_phcement_3 volume P
- wedge . ——O
Yé éz uniform_ P
— position volume
—C tor?'da— u_multiplicities
| volume |- ' L[2:7] b_spline_
mlgprs_(g gmajor_radlus position o—=— \volume O
o— ; St .
radiu : | helght Vv mU|t|p||C|t|eS with knots W_mu|t|p||c|t|es
ecce.ntrllc_ semi_axis_ - L[27] L[Zo]
——C} conica — -
volume | S€ML_axis_ u_knot w_knots
ratiog L[2:7] L[2:7]
x_offse _offset v_knots
it L[2:?
L jcylindrical_| position [2:7]
volume

Figure D.13 — Geometry_schema EXPRESS-G diagram 13 of 13

(©ISO 2000 — All rights reserved

309

ISO 10303-42:2000(E)

(1,2(3))

topological_

representation
item

representatio
representation
item

|/geometryy, < — — — — — — _ _
vertex_ \ point)i ! geometry. \ !
9 shell L : geometric_ :
representation
Sl (o) | e 1T |
extent loop geometry L ——=—==~=~ -
vertex
S =
L 3 vertex point
D (DER)
edge._staft cgDER)t t edge_'end .
g d edge_sta ' orientation.
S — 0”55‘52“— 13(2)
1
——— edge ‘ edge_
element
parent
edge
seam_
geometry. edge
subedge o— geometric_ pCuve
representation (L[eferenge
23)
' I/ geometry.\|
| e s
face_bound edge_
— curve same_sen
31
wire_shel edge
geometry
3,2 Fr= = - 4
connected_ | geometry.\!
edge_set [curve /|
3,3
connected_
face set

2,2
loop

2,1
path

Figure D.14 — Topology_schema EXPRESS-G diagram 1 of 3

310

(©ISO 2000 — All rights reserved

a
~ =

2,2
(1)
2,7
3)

2,4
(1)

orientatioi

2.3
(1)
2,8
3)

ISO 10303-42:2000(E)

(DER)
edge_list
- L[1:7] 1,3
path_element 1 Oflenttﬁd_ oriented_edgg
pa
orientation
ath
P 1 open_ (DER) ne
. — path
edge_list
L[1:?] Fro == ==== - 1
oriented_ed ——(geometric_.)
= edge_ representation_item
— 4 loop B
loop
1 vertex_
—< loop loop_vertex/ "1 1
vertex
bound
poly_loop o—
A (Lpolygon L[3:?]
face_ (DER) - O _
t]:aced outer_ bounds | geometry: |
oun bound S[1:7?] | carte_sian_|
face_element > EOTt
bounds oriented orientation
. —C — 0
S[1:7] face
same_sense
———0
¢ 1 face
ace = = = =
surface f—or geometry.wl
ace_geometry[surface |
T subface

parent_face

Figure D.15 — Topology_schema EXPRESS-G diagram 2 of 3

(©ISO 2000 — All rights reserved

311

ISO 10303-42:2000(E)

wire_shell_
extent

3.1 (1) wire S[1:7] 2,7
' shell | loop
'1 shell 1,4 connected
bl J vertex_shell 2@ edge_set

ces_edges
S[1:7]

1,2
edge

connected_
face sb set open_shell_element
parent open oriented
face_se — |—= D < hell 1
a shell open_she
1 orientatio%
connected
33(1) face_set
orientatior%)
cfs_faces L g
[| 7 closed | 4 oriented
shell closed shel

closed_shell_element
(DER) cfs_faces S[1:?]
(DER) cfs_faces S[1:?]

Figure D.16 — Topology_schema EXPRESS-G diagram 3 of 3

312 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

/" geometry\ geometry. ! ~geometry.cartesian, !
volume geometric_ ' transformation_ |'
L= 6a§sJ_ representation_iten IL operator_3d J|
volume e
vl O trimmed_ Owl transformation
v2 O volume Ow2 id parent_solid
2,1 solld_— 5 solid_replica
ng_sond (L (L 1,1 (2) mOdel
ul u2 1 T
J’ J> swept J> swept (l>
- - swept_ < swept_
brep_2d g%g'fcgrde— face face face area_
—orep solid solid
== ==
topology. geometry.
exten outer 'LJ' : curve_boundef
O _ _ __ O _T" T -~ A _surfaceJ
' “topology.! " topology. \ .
' face /' closed_she
L —] L] l l
l l | revolved_ extruded_
faceted brep_ with face_solid face_solid
brep voids : angle extrudeg
; axis depth directiorf
voids - —-50_ _ _| O _
SET[1:?] eometry: geometr
' axisl_ ' ' direction/"
'~ Topology. . _\placemeny/ ==
' __shell /1 axis_line
- O _
r 7 1
start_ para Surface_ |< geo.metry.)|
curve_swept N_line /|
directrix| reference start_ paral
surface O— =

» .
c)
curve
Ik
=
L\Surface/,

end_para

=1
surface_ (9eometry.,
curve_swept line |

directrix

area_solid _(D_ER_)
axis_lin

e
rf
(\surface

reference_|
surface
= extruded_ revolved_
area_solid area_solid

extruded :

(Ldepth [Ldirection_ _CLEX'_S
- Q — 4 " geometry

pdirection/ \placement!

(Langle

Figure D.17 — Geometric_model _schema EXPRESS-G diagram 1 of 4

(©ISO 2000 — All rights reserved

313

ISO 10303-42:2000(E)

tree root - -------- oo
.| expresssion | | '
2,1(1) csg_solid p40| csg_select geometric
e representation_iten
oosg
4.1 primitive_2d o _Fir_lr?l_t'_V_e_ N boolean
4,2 faceted_ result
—_ primitive @’3 half_space_2d |— first | second operatol
operand operan
xlengtﬁf ?ylength
rectangular_| height P o - 1| oo oo
o riboolean_1 | 1 boolean:
—C_ pyramid position |1 operand i | | operator .
: —O radius1 B
cyclide_ O radius2 iy
segment_——oO cone_angle% position |
i ——O cone_angle
—q_ solid [5ium angle P AT 0 |
o geometry. alf space 11
—O 1 . . .
ctipsoid |35 85 S s phcomen 3 | 5o (oid o
' seml_ami_?i = _ _angitiaan_reeme t base
centre ' geometry. 9 f surface
sphere | point) "
— Tadius © T rE ==
9 bok Lo I
—O0 . _ _ _ _ __ _ _
poﬁtlon | geometry_ | bOXed
—{- position Jlaxis2_pacement_34! half space
— L=
—Cnght_angula-#() wlenath enclosure
_wedge ——O eng
Itx ylength]
Yé éz box domain
N O—————
e positon [geometry. ! zlength
O)
torus axisl_phceme tI corner
L ______ J r _C)_ 1
minor_| major_ P R N geometry,.
radu radius height Naxi de%metry. t_ 3 : :
o Tight_ 0 LB PEETE S point /
circular_ | radius o o
emtlsone| position position height
ang eccentric_| SE€ML_axis_
— cone
—d MM position [~geometry. : i axi
. _ : ratio semi_axis_2
o e)]
Loyundet J L =—==== 1 x_offsety ¢y_offset
radlu% (Lhelght

Figure D.18 — Geometric_model _schema EXPRESS-G diagram 2 of 4

314

©

ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

' : surface_:
model
LL

holl based sbsm_boundary - — — _ _ _

snell_pbasea_| S[1:?

surface_ [1:7] O: tozﬁglgy. :
model i

T ===
face based | topology:. |
surface_ fosm facesol connected |
model SIL:?] face_set/,
|__________| - _— = = = 7
geometry. shell_based
[i [N T topology. \|
geometric_ wireframe d
| . . | — | sbwm_boundary ||
representation_itep model T
| NEpresenation e, S[1:7] ===
! |wireframe_|
model
LL — — _ _1
edge_based | lh opology: ﬁl
wireframe_ G| connected
model ebwm_boundary 1\ _gdge set’'
S[1:7] - - -~
geometric_
curve_set
tri 1 sectioned_
geometric_ spine
set o Cross_| |
P sectioﬁi lspine_points
/(9 O elements X L[2:?
:: L S[1:?] P S el
LT ! 0. _ (geometryy, | /gEOMetry,
roo=—===_ ! . _curve /! I\ point /!
| (geometr || geometric_ Lot b1 J
'_ curve /! || set_select | -
LoTTe—— - 2 L geometric_
e 1 set_replica
| o— parent_set g transformation
1\ _surface/, f——_—O_ _ _ |
L_>——-—-—Z_ 1 geometry

cartesian_ |
transformation_ |
operator

Figure D.19 — Geometric_model _schema EXPRESS-G diagram 3 of 4

(©ISO 2000 — All rights reserved

315

ISO 10303-42:2000(E)

primitive_2d

1 elliptic ———O Semi_axis_l
9 a‘r)ea_ ——O semi_axis_2
(gposition
rectangular_ [POsition | geometry. '
— i L L T
area axis2_phcement_2gd
e _
b Y
i radius
4 circular. [©
area
centre
4 polygonal_ —q' geometry. !
area bounds cartesian_point /!
L[3:7] D

—CQ tetrahedron

() A faceted_ 1
420 primitive

convex_
hexahedron

! geometry. !
_ cartesian_point /!
L d

base curve | !
(4,3 (2))—C half_ space 20— Q '
, L J

rectangled_ enclosure - rectangle_ corner

half_space domain
xlengtri <Lylength

Figure D.20 — Geometric_model _schema EXPRESS-G diagram 4 of 4

316 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

Bibliography

[1] BARTELS, R. H., BEATTY, J. C. and BARSKY, B. ASplines in Computer Graphics and Geomet-
ric Modelling; Morgan Kaufman, 1987.

[2] FARIN, G.; Curves and Surfaces for Computer Aided Geometric Design, 3rd. Edaicexdemic
Press, 1993.

[3] Gray, A.; Clothoids;Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd.
edition, CRC Press, pp 64-66, 1997

[4] Initial Graphics Exchange Specification (IGES) Version &IS; Product Data Association; ANS US
PRO/IPO - 100 - 1996.

[5] PIEGL, L. and TILLER, W.;The NURBS BoolSpringer-Verlag, 1995.

[6] PRATT, M. J.;Cyclides in Computer Aided Geometric Desigbomputer Aided Geometric Design
7,221 —-242 (1990).

[7] PRATT, M. J.;Cyclides in Computer Aided Geometric Design @pmputer Aided Geometric De-
sign 12, 131 — 152 (1995).

[8] WILSON, P. R.;Euler Formulas and Geometric ModelinEEE Computer Graphics & Applica-
tions, Vol. 5, No 8, pp. 24-36, August 1985.

(©ISO 2000 — All rights reserved 317

ISO 10303-42:2000(E)

Index

d-manifold With DoUNdary. e 5
above_plane funCtion.o 174
acyclic_curve_replicafunction. e 145
acyclic_point_replicafunction. e 146
acyclic_set_replicafuncClion. 281
acyclic_solid_replicafunction. e 280
acyclic_surface_replicafunction i 146
AICWISE CONNECIEM. . . .ottt e et e e e e e e e e e e e 4
associated_surface fuNCHiON. i e 147
AXI-SYMIMETIIC . . . ettt ettt e e e e e e e e e e 4
AaXISL_PlaCEMENT. . . e 38
AXISZ2_PlaCEMENT. . .ot e 22
axiS2_placement_2d e 38
aXiS2_PlacemMeNnt_Sao e 40
D SPliNE CUIVE . . e e 59
b Spline _CUIVE _fOrm . .. e 17
b_spline_curve_with_KNOtS. o 61
D Spline _SUMaCe. e 105
b_spline_surface form e 18
b_spline_surface_with_KNOLS. e 106
b _Spline _VOIUME 135
b_spline_volume_with_KNOtS e 137
base aXisS fUNCHON. i e e e e 148
D ZIEr CUINVE . 65
DezZier _SUMaCE . . . o e 110
Dezier VOIUME .. 138
BIOCK . . e 243
DIOCK _VOIUME. . .. 122
boolean chooSe fUNCHIONt i e e e e 222
boolean_operand.o i 232
DOOlEAN_OPEIatOr. e 233
boolean _resUlL. e 242
DOUNDANY. . .. e 4
boundary representation solid model (B-rep)ot 4
DoUNdAry CUIVE. .. 115
DOUNdEd CUIVE . .. e 56
bouNded _PCUIVEo 74
bouNded SUMaCE. e e e e 103
bounded_surface _CUINE. e 78
DOUNAS. . .. e 4
DOX _dOmMaiN. . .. e 258
boxed_half_space. 257
0] =7 o 7 o R 240

318 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

brep _With _VOIds. oo 239
build_2axes fUNCHION e 149
build_axes fUNCHION.o 150
build_transformed_setfunction 283
CaNESIAN_POINL . . o .ottt et e et e e 27
cartesian_transformation_operator 42
cartesian_transformation_operator .2d. 45
cartesian_transformation_operator .3d. 43
CITClE 49
Lo (o =T = (= VA 259
ClOSEA CUNVE. . . et e e e e e e e e e 4
ClOSEd SUIMACE.o 4
Closed _Shell e 211
closed_shell_reversed functian. i 219
ClOtNOId . .. 56
compatible_dimension_rule e 142
completion of a topological entity.t e 5
COMPOSITE _CUIVE . . ettt ettt ettt e e e e e e et e et e e e e e e eaes 70
COMPOSItE_CUINVE_ON_SUMACE. . ..ottt et e 79
COMPOSItE_CUIVE_SEOMENL. . ..\ttt ettt ettt et e et et e e e 71
conditional_reverse fUNCLion. i e 214
o7 1 T 48
CONICAl_SUIMACE . .. o 87
CONNECEEA. . . o e e e e 5
CONNECEEd COMPONENT . . .\ttt ettt ettt et e e et e e e e et e e 5
CoNNECtEd_BAQgE Sel6. ... e 214
connNeCted _faCe _SeL. 204
connected_face _SUb _Set. 213
constraints_composite_curve_on_surfacefunction........... L 167
constraints_geometry_shell_based_surf_modelfunction................ 282
constraints_geometry_shell_based_wireframe_modelfunction............................ 282
constraints_param_b_splinefunction 164
constraints_rectangular_composite_surface function. i 170
constructive solid geometry (CSG)ttt e e e 5
CONVEX_heXahedrOn. e e e 248
COOMAINALE SPACE. . . ¢« .ttt ettt ettt et e et e e e et e e 5
CrosS_ProducCt FUNCHIONot et e e 154
(oo T 0] 110 0111177 233
(oS [T =T o 234
CSO_SOlIO. . .ot e 242
CUIVY B ettt e e et e et e e et e et e e e e e 5,47
curve_bounded_SUrface. i 113
CUIVE_ON_SUMACE ot e e e e 23
(o B] Y (=T o] 1o PO 82
curve_weights_positive fUNCHION oo e 166

(©ISO 2000 — All rights reserved 319

ISO 10303-42:2000(E)

Oyl . e e 5
cyclide_segment_SOlido. ot e 255
Cylindrical_point. e 28
cylindrical_SUrfacCe. e 86
cylindrical_Volume. o 130
default_b_spline_curve_weightsfunction. i 163
default_b_spline_knot_multfunction......... i 161
default_b_spline_Knotsfunction 162
default_b_spline_surface_weightsfunction i i 163
JEOENEIALE _PCUIVE.ottt ettt ettt e e e e e e e e e 34
degenerate_toroidal_SUrface. i e 91
01 1= =T o = 242
AIMENSION _COUNL. .. e e et e e e e e e e et e e 17
dimension_Of fUNCHION e 144
dIMeENSIONAIILY.o 5
QI ON - . e 35
JOMAIN . . . e e 5
dot_pProdUCt TUNCHIONottt e e e e 155
dUMIMY_gri CONSTANT. . .« ettt et e e e e e et 16
dupin_CycClide_SUITaCE.ot e 96
= Tod o =T | T oo] = A 252
eccentric_conical_VolUME 131
=T [T 187
edge_based_wireframe_model. 276
<o [T o U = P 188
edge_curve_peurves FUNCHION.t e e 228
=T [T (0T NP 196
edge_reversed fUNCLION e e e 216
elementary _SUIMACEt e e e 84
Bl . .o 51
BllIPSOId . .o e 254
ellipSOid_VOIUME . .o 134
BlIPHIC I, . . .ottt e 260
BUIBT BQUALIONS. . . . ottt e e e e e e e e 6
evaluated_degenerate_PCULVE.ttt et et e e 35
XN . . e e e 6
EXIENt_ENUMETALION. e e e 19
extruded_area SOlid. i 269
extruded_face _SOlid. 264
A .o 200
face_based_surface_model e 275
faCE DOUNG . .o 198
face_bound_reversed fUNCLioN. e 217
face_outer_boUNd. 199

320 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

face_reversed fUNCHIONo e 218
fACE SUMACE o 201
[E= Yot =2 =T o] (=] o1 240
faceted_PrimitiVe.o e 246
NI Lo 6
firSt_proj_axiSfUNCHION.o e e 151
fixed_reference_swept_surface. i 102
0ENUS Of @ graph . .o e 6
0ENUS Of @ SUIMACE. . ..ot e e e e 6
gEOMELriC COOrdiNALE SYSTEIMttt ettt e et e 6
(o =T0] g L] (g [oR o Y=] PR 278
geometric_representation_CONTEXL.ttt e eaeen 25
geometric_representation_Item.ottt e 26
[0 T=T0] 4 T= 1 g o] = P 277
QEOMELIIC_SEt TEPIICA. « .ottt e e 279
geometriC_Set SeleCt 234
geometrically founded. e 6
geometrically related e 6
get_basis_surface funClian 167
0] 7= o o AP 7
half_Space _2d. 262
half_space_SOlid.o 257
aNdlE . ..o 7
hexahedron_VolUMe. e e 127
NOMEOMOIPNICo e 7
RYPErDOIa. e 52
5] o = 7
LY==t =Tl =] 10 o> 3
1] 1= 1) 7
] (= £7= o3 1 o o 242
1] (=T £T=Tox 1 o] o H o]] Y= S 77
R0 S 37/ =P 19
N L 48
S 7
list_face _loopSTUNCHION o 224
list_loop_edgesS fUNCLION. e e e 224
list_of reversible_topology item. 183
list_of_topology_reversed funCtian.ot 222
list_shell_edgesfunClion. o e e 225
list_shell_facesfunction. i 226
list_shell_1oopsSfUNCLiON e e e 226
liSt_tO_array fUNCLION e e 171
lISt 10 SEtfUNCHIONo e e 228

(©ISO 2000 — All rights reserved 321

ISO 10303-42:2000(E)

0T o PP 195
make_array_of _array function e 172
make_array_of array_of array function......... 173
manifold_solid_Brep. 238
mixed_loop_type_SetfunCtionoo oot e 227
MOOEI SPACE . . ettt e e e e 7
MSh_shells fUNCHON e e 284
normalise fUNCHION. e 156
Off Bt CUIVE 20 . ..o 80
Off Bt CUINVE B . ..o 81
OffSEt SUMACE. . . . oo e 119
OPEN CUIVE. . oottt et et et e e e 7
OPEN SUIMACE . .ottt e e e e e e e e e 7
PN PALN . e e 194
0PN _ShEll . e 209
open_shell_reversed funClion. e 220
O ENtADIE . . e e 8
oriented_closed_shell. e 212
(o] 1=T 1 (=To [=T [T PP 189
orieNted_faceo 202
oriented_open_Shell e 209
oriented_patho 192
ofieNted_SUIMaCE. 120
orthogonal_complement funCtiont e e 151
oUter_bOUNArY _CUIVE . .. et e e e e e e e e 116
(01T o =T o PP 8
PArabOIa. e 55
[Tz 1 0= (=] g = o [8
PAIAMEIEN SPACE. . . .« e et ettt ettt e e et e e e e 8
ParametriCc VOIUME. e e e e e e e e 8
PN o 192
path_head to_tail funCtion. e 223
path_reversed fUNCHION e e e e e 217
PCUIV . . e e 73
PCUIVE_OF _SUIMACE. . . . ettt et e e e e e e e e et e et 23
PlACEMENT. . . .o e 37
placement COOrdinate SYStEIM.ttt e e 8
PlANE . . e 85
POINE . .ot e 27
POINT N _VOIUME. . ..o e e e e e e e 32
Lo 1 Ao o T o 07/ 31
POINt_ON_SUIACE. . . . e e 32
POINE_TEPIICA. . . .ottt e e e e e e e 33

322 ©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

POIAr _POINT. .. e 30
POIY J00P . . et e e e 197
POIYQONAI_Ar Aottt e 261
POIYIINE . 58
preferred_surface_curve_representation.t e 20
PHIMITIVE 20 . . .ot e e e e e 259
PYramid_VOIUME. e et e e e e e e 125
QUAST_UNIf O CUIVE . . . ottt e et e e e et e e 63
qUAST_UNIfOIM_SUMaCE. e e e 109
quasi_Uniform_VoIUMEo e 140
rational_b_Spline _CUIVE e 66
rational_b_spline_SUMace i e 111
rational_b_spline_VolUmME. 141
rectangle_dOmain. i e 263
rectangled_half_space.o 262
FECLANQUIAI _BIEa.ottt e e e e e 260
rectangular_composite_SUIface ... e 117
rectangular_pyramid. 245
rectangular_trimmed_SUrface.ot 112
reparametrised_CoOmpOoSIte_CUINVe_SEOMENL.ottt e 73
reversible_topology e 184
reversible_topology _item. e 183
revolved_area SOlid. i e 269
revolved_face _SOlid. i e 266
right_angular_wWedge. i e 244
FQht_CIrCUlar _CONE. e e e 250
right_circular_CyliNder.o e e e e e 251
same_Side fUNCHION.o 175
scalar_times_vector funClioN o e 157
SBAML_CUIVE . oottt ettt et ettt ettt e e e e e e e e et e e e e e e 77
SBAM UG . . ettt et e e 190
Second_proj_axiSTUNCLION.ttt e e e 153
SECHIONEU _SPINE. . .ttt e 278
SEIf N ISo 8
Sl I00P . e 8
ST <) PP 8
set_of reversible_topology item 184
set_of _topology_reversed fUNCLON.ttt e 221
SNl . 183
shell_based_surface_model. 274
shell_based_wireframe_model. ... e 275
shell_reversed fuNCLiON. e 219
SOl _MOeL. .. e 236
SOl _TEPINICA. . . ettt e 273

(©ISO 2000 — All rights reserved 323

ISO 10303-42:2000(E)

space dimensionality.t e 9
3] 0] 1= AP 249
SPNEriCAl_POINT e 29
SPheriCal_SUIMaCE. e 89
SPheriCal_VOIUME . .. e 129
SUDBAGE . .. e 191
SUD ACE. . .o e 203
SUIN G, . oottt 9,83
SUMaCe_DOUNANY. e e e e 23
ES] 1 = ot o 1 Y= 75
surface_curve_swept_area_Salid. e 271
surface_curve_swept_face _solid 267
surface_Curve _SWEPt SUMaCEot e e 100
surface _MOdel 235
surface_of _linear_extrUuSiONt e 98
surface_of reVolULIONo 99
SUMACE _PaICN. . .. e 118
SUIMACE _TEPIICA . . .o ettt e e e e e e e 121
surface_weights_positive fUNCLION i e e 168
swept_area _SOld. e 268
swept_face Solid. ... 263
SWEPE_SUIMACE . . . o ettt et ettt e e e e e e e e 97
tetranEdrON . . 247
tetrahedron_VOIUME. e 126
TOPOIOgICAl SENSE. . . .o e 9
topological_representation_item.ttt e 185
topology_reversed fUNCHION.t e e 215
tOroidal_SUMACEo e 90
toroidal _VOIUME. . .. 133
10 (101 AP 253
TrANSItION _COE .. e 21
L] 0] 0= o I o] B 1 =P 68
MMeEd _VOIUME. . . e 272
MMING_PrefereNCE . . . e e e 21
IMMING_SEIECTo e e 24
811 0 o T 1 U1 Y/ 63
UNIf O SUIACE. . . o et e e e 108
UNIfOrM VOIUME. e e et e e 139
) o 242
L7203 {0 AP 36
vector_difference funCtion o 160
VECTOr_OF I ION . . .o e e 24
VECTOr _SUM fUNCHION . . o e e e e 158
VB X . e et e e e e e e e e e e e e e e 185

324 (©ISO 2000 — All rights reserved

ISO 10303-42:2000(E)

VEIEX 00D . . o ettt e e e e 195
VEITEX _POINL. ¢ .o ettt ettt e et e e e e e 186
vertex_point_pCcurveS fUNCLIONttt e e 230
VerteX _Shell. ... e 205
VOIUMIE o et e e e e e e 122
volume_weights_positive fUNCLION e 169
WeAgE_VOIUME. . ..ot e e e e e e e e 124
WITE SRl . e 206
wireframe_MOdEL e 235

(©ISO 2000 — All rights reserved 325

